Skip to main content
Log in

Nonlinear dynamic behavior of a clamped–clamped beam from BNC nanotube impacted by fullerene

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinear dynamic behavior of a clamped–clamped nanobeam built with boron nitride carbon (BNC) nanotube is investigated as for its potential application in a mass sensor. To make it anisotropic in terms of bending stiffness, the cross section of the tube contains symmetrically two B–N zones and two carbon zones which accommodate 60% of atoms in the whole nanotube. The dynamic behavior of the nanosensor, colliding with a high-speed \(\hbox {C}_{60}\) at the central part of the beam, is evaluated using molecular dynamics simulations and fast Fourier transform approaches. Results obtained show that the amplitude of vibration of the tube depends on the magnitude \((v_{\mathrm{In}})\) and direction (\(\theta \)) of the incident velocity of the \(\hbox {C}_{60}\). When \(v_{\mathrm{In}}\) is higher than a critical value, the beam will be damaged in the collision. The position of the damage on the nanobeam and the critical value depend on \(\theta \). If \(v_{\mathrm{In}}\) is lower than the critical value, the first-order frequency of the vibration at the beam centroid is lower when impacted by a faster \(\hbox {C}_{60}\). The second-order frequency depends on the configuration of the beam’s central cross section. The intervals of the first-order frequency with respect to \(\theta = 0^{\circ }\) and \(90^{\circ }\) are not overlapped. These findings hint that a BNC nanobeam can be used to measure the mass of a molecular under a known incident velocity or an incident velocity of a known molecular via this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Poncharal, P., Wang, Z., Ugarte, D., De Heer, W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407), 1513–1516 (1999)

    Article  Google Scholar 

  2. Burg, T.P., Godin, M., Knudsen, S.M., Shen, W., Carlson, G., Foster, J.S., et al.: Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446(7139), 1066–1069 (2007)

    Article  Google Scholar 

  3. Zhang, Y., Liu, Y.: Detecting both the mass and position of an accreted particle by a micro/nano-mechanical resonator sensor. Sensors 14(9), 16296–16310 (2014)

    Article  Google Scholar 

  4. Sazonova, V., Yaish, Y., Üstünel, H., Roundy, D., Arias, T.A., McEuen, P.L.: A tunable carbon nanotube electromechanical oscillator. Nature 431(7006), 284–287 (2004)

    Article  Google Scholar 

  5. Garcia-Sanchez, D., San Paulo, A., Esplandiu, M.J., Perez-Murano, F., Forró, L., Aguasca, A., et al.: Mechanical detection of carbon nanotube resonator vibrations. Phys. Rev. Lett. 99(8), 085501 (2007)

    Article  Google Scholar 

  6. Imboden, M., Mohanty, P.: Dissipation in nanoelectromechanical systems. Phys. Rep. 534(3), 89–146 (2014)

    Article  MathSciNet  Google Scholar 

  7. Yang, Y.-T., Callegari, C., Feng, X., Ekinci, K.L., Roukes, M.L.: Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6(4), 583–586 (2006)

    Article  Google Scholar 

  8. Jensen, K., Kim, K., Zettl, A.: An atomic-resolution nanomechanical mass sensor. Nat. Nanotechnol. 3(9), 533 (2008)

    Article  Google Scholar 

  9. Chaste, J., Eichler, A., Moser, J., Ceballos, G., Rurali, R., Bachtold, A.: A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7(5), 301 (2012)

    Article  Google Scholar 

  10. Qiu, W., Kang, Y.L., Lei, Z.K., Qin, Q.H., Li, Q., Wang, Q.: Experimental study for Raman Strain Rosette based on carbon nanotube strain sensor. J. Raman Spectroscopy 41, 1216–1220 (2010)

    Article  Google Scholar 

  11. Cai, K., Yu, J., Wan, J., Yin, H., Qin, Q.H.: Configuration jumps of rotor in a nanomotor from carbon nanostructures. Carbon 101, 168–176 (2016)

    Article  Google Scholar 

  12. Cai, K., Li, Y., Qin, Q.H., Yin, H.: Gradientless temperature-driven rotating motor from a double-walled carbon nanotube. Nanotechnology 25(50), 505701 (2014)

    Article  Google Scholar 

  13. Qin, Z., Qin, Q.H., Feng, X.Q.: Mechanical property of carbon nanotubes with intramolecular junctions: molecular dynamics simulations. Phys. Lett. A 372(44), 6661–6666 (2008)

    Article  MATH  Google Scholar 

  14. Qiu, W., Kang, Y.L., Lei, Z.K., Qin, Q.H., Li, Q.: A new theoretical model of a carbon nanotube strain sensor. Chin. Phys. Lett. 26(8), 080701 (2009)

    Article  Google Scholar 

  15. Xu, T., Ruzziconi, L., Younis, M.I.: Global investigation of the nonlinear dynamics of carbon nanotubes. Acta Mech. 228(3), 1029–1043 (2017)

    Article  MathSciNet  Google Scholar 

  16. Xu, T., Younis, M.I.: Nonlinear dynamics of carbon nanotubes under large electrostatic force. J. Comput. Nonlinear Dyn. 11(2), 021009 (2016)

    Article  Google Scholar 

  17. Qiu, W., Li, Q., Lei, Z.K., Qin, Q.H., Deng, W.L., Kang, Y.L.: The use of a carbon nanotube sensor for measuring strain by micro-Raman spectroscopy. Carbon 53, 161–168 (2013)

    Article  Google Scholar 

  18. Chopra, N.G., Luyken, R., Cherrey, K., Crespi, V.H.: Boron nitride nanotubes. Science 269(5226), 966 (1995)

    Article  Google Scholar 

  19. Loiseau, A., Willaime, F., Demoncy, N., Hug, G., Pascard, H.: Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys. Rev. Lett. 76(25), 4737–4740 (1996)

    Article  Google Scholar 

  20. Arenal, R., Stephan, O., Cochon, J.-L., Loiseau, A.: Root-growth mechanism for single-walled boron nitride nanotubes in laser vaporization technique. J. Am. Chem. Soc. 129(51), 16183–16189 (2007)

    Article  Google Scholar 

  21. Knobel, R.G.: Mass sensors: weighing single atoms with a nanotube. Nat. Nanotechnol. 3(9), 525–526 (2008)

    Article  Google Scholar 

  22. Enouz, S., Stéphan, O., Cochon, J.-L., Colliex, C., Loiseau, A.: C–BN patterned single-walled nanotubes synthesized by laser vaporization. Nano Lett. 7(7), 1856–1862 (2007)

    Article  Google Scholar 

  23. Zhang, G., Liu, Z., Zhang, L., Jing, L., Shi, K.: Growth and characterization of BCN nanotubes with high boron and nitrogen content. J. Chem. Sci. 125(5), 1169–1176 (2013)

    Article  Google Scholar 

  24. Zhang, J., Meguid, S.: Composition-dependent buckling behaviour of hybrid boron nitride-carbon nanotubes. Phys. Chem. Chem. Phys. 17(19), 12796–12803 (2015)

    Article  Google Scholar 

  25. Chiang, W.-H., Hsieh, C.-Y., Lo, S.-C., Chang, Y.-C., Kawai, T., Nonoguchi, Y.: C/BCN core/shell nanotube films with improved thermoelectric properties. Carbon 109, 49–56 (2016)

    Article  Google Scholar 

  26. Cai, K., Yang, L.-K., Shi, J., Qin, Q.-H.: Critical conditions for escape of a high-speed fullerene from a BNC nanobeam after collision. Sci. Rep. 8(1), 913 (2018)

    Article  Google Scholar 

  27. Kroto, H.W., Heath, J.R., Obrien, S.C., Curl, R.F., Smalley, R.E.: C60—Buckminsterfullerene. Nature 318(6042), 162–163 (1985)

    Article  Google Scholar 

  28. Mohlenkamp, M.J.: A fast transform for spherical harmonics. J. Fourier Anal. Appl. 5(2–3), 159–184 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Heideman, M., Johnson, D., Burrus, C.: Gauss and the history of the fast Fourier transform. IEEE ASSP Mag. 1(4), 14–21 (1984)

    Article  MATH  Google Scholar 

  30. Tersoff, J.: Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B 39(8), 5566 (1989)

    Article  Google Scholar 

  31. Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112(14), 6472–6486 (2000)

    Article  Google Scholar 

  32. Jones, J.E.: On the determination of molecular fields. II. From the equation of state of a gas. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 106, 463–477 (1924)

    Article  Google Scholar 

  33. Weaver Jr., W., Timoshenko, S.P., Young, D.H.: Vibration Problems in Engineering. Wiley, New York (1990)

    Google Scholar 

  34. Smirnov, V., Manevitch, L.: Semi-inverse method in nonlinear mechanics: application to couple shell-and beam-type oscillations of single-walled carbon nanotubes. Nonlinear Dyn. 93, 205–218 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from National Key Research and Development Plan, China (Grant No.: 2017YFC0405102), National Natural Science Foundation, China (11772204; 51505388), Research Foundation for PhD in Northwest A&F University (Grant No.: 2452016176), Fundamental Research Funds for the Central Universities (Grant No.: 2452017119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Hua Qin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Cai, K., Shi, J. et al. Nonlinear dynamic behavior of a clamped–clamped beam from BNC nanotube impacted by fullerene. Nonlinear Dyn 96, 1133–1145 (2019). https://doi.org/10.1007/s11071-019-04845-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04845-6

Keywords

Navigation