Skip to main content
Log in

Growth and characterization of BCN nanotubes with high boron and nitrogen content

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Multiwalled carbon nanotubes doped with boron and nitrogen (BCNTs) have been synthesized by chemical vapour deposition at temperatures ranging from 800°C to 950°C. Their morphological and structural features have been studied by transmission electron microscope, which reveal that BCNTs have bamboo-like structure. The results of X-ray photoelectron spectroscopy demonstrated that the atomic ratio of B, C and N of BCNTs is about 1:4:1, when temperature is 850°C. Electrooxidation performance of the BCNTs for NO at the modified electrodes was investigated. The results of cyclic voltammograms and the electrochemical impedance spectroscopy of BCNT-modified electrodes indicated that the activity of NO electrooxidation on 850°C-modified electrodes is much stronger than others and the charge transfer resistance of NO electroxidation BCNT-modified electrode is the least. By this means, BCNT-modified electrodes showed excellent electrode materials for NO detection and other potential applications.

Boron and Nitrogen doped carbon nanotubes (BCNT) have been synthesized by chemical vapour deposition at temperature ranging from 800° to 950°C. Electrocatalytic properties of BCNTs have been investigated by cyclic voltammetry and the sensitivity of BCNT-850°C-modified electrode is the highest of all experimental electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Dominik E 2010 Chem. Rev. 110 1348

    Article  Google Scholar 

  2. Abhishek K K, Erkan K and Brian W S 2009 J. Mater. Sci. 44 6020

    Article  Google Scholar 

  3. Renzhi M, Yoshio B and Tadao S 2002 Adv. Mater. 14 5

    Google Scholar 

  4. Yu J and Bai X D 2000 Chem. Phys. Lett. 323 529

    Article  CAS  Google Scholar 

  5. Su C Y, Juang Z Y and Chen K F 2009 J. Phys. Chem. C113 14681

    Google Scholar 

  6. Pattanayak J, Kar T and Scheiner S 2002 J. Phys. Chem. A106 2970

    Article  Google Scholar 

  7. Lei W W, Portehault D and Dimova R 2011 J. Am. Chem. Soc. 133 7121

    Article  CAS  Google Scholar 

  8. Golberg D, Costa P and Lourie O 2007 Nano Lett. 7 2146

    Article  CAS  Google Scholar 

  9. Yin L W, Bando Y and Golberg D 2005 J. Am. Chem. Soc. 127 16354

    Article  CAS  Google Scholar 

  10. Yang X X, Liu L and Wu M H 2011 J. Am. Chem. Soc. 133 13216

    Article  CAS  Google Scholar 

  11. Terrones M, Grobert N and Terrones H 2002 Carbon 40 1665

    Article  CAS  Google Scholar 

  12. Raidongia K, Jagadeesan D and Mousumi U K 2008 J. Mater. Chem. 18 83

    Article  CAS  Google Scholar 

  13. Wang W L, Bai X D, Liu K H and Xu Z 2006 J. Am. Chem. Soc. 128 6530

    Article  CAS  Google Scholar 

  14. Bhattacharya S, Majumder C and Das G P 2009 J. Phys. Chem. C113 15783

    Google Scholar 

  15. Matos M A, Azevedoa S and Kaschny J R 2009 Solid State Commun. 149 222

    Article  CAS  Google Scholar 

  16. Kim S Y, Park J and Choi H C 2007 J. Am. Chem. Soc. 129 1705

    Article  CAS  Google Scholar 

  17. Terrones M, Golberg D, Grobert N, Seeger T, Reyes-Reyes M, Mayne R, Kamalakaran R, Dorozhkin P, Dong Z C, Terrones H, Ruhle M and Bando Y 2003 Adv. Mater. 15 1899

    Article  CAS  Google Scholar 

  18. Dominick V, Lanzisera and Andrews L 1997 J. Phys. Chem. A101 7134

  19. Sen R, Satishkumar B C, Govindaraj A and Harikumar K R 1998 Chem. Phys. Lett. 287 671

    Article  CAS  Google Scholar 

  20. Stéphan O, Ajayan P M, Colliex C and Redlich Ph 1994 Science 266 1683

  21. Ma R and Bando Y 2002 Chem. Mater. 14 4403

    Article  CAS  Google Scholar 

  22. Wu J, Han W Q, Walukiewicz W, Ager J W III, Shan W, Haller E E and Zettl A 2004 Nano Lett. 4 647

  23. Xu X, Yang L J and Jiang S J 2011 Chem. Commun. 47 7137

    Article  CAS  Google Scholar 

  24. Dong J P, Qu X M and Wang L J 2008 Electroanalysis 18 1981

    Article  Google Scholar 

  25. Pokropivny V V, Shorokod V V and Oleinik G S 2000 J. Solid State Chem. 154 214

    Article  CAS  Google Scholar 

  26. Gao R, Yin L W and Wang C X 2009 J. Phys. Chem. C 113 15160

    Article  CAS  Google Scholar 

  27. Caretti I, Jim J and Albella J M 2003 Diam. Relat. Mater. 12 1079

    Article  CAS  Google Scholar 

  28. Kim D H, Byon E and Lee S 2004 Thin Solid Films 447–448 192

    Article  Google Scholar 

  29. Zhou Z F, Bello I and Lei M K 2000 Surf. Coatings Technol. 128–129 334

    Google Scholar 

  30. Yap Y K, Kida S and Aoyama T 1998 Appl. Phys. Lett. 73 915

    Article  CAS  Google Scholar 

  31. Yap Y K, Kida S, Wada Y, Yoshimura M and Mori Y 2000 Diam. Relat. Mater. 9 1228

    Article  CAS  Google Scholar 

  32. Kan K, Xia T L, Li L and Bi H M 2009 Nanotechnology 20 185502

    Article  Google Scholar 

  33. Berns D H and Cappelli A 1996 Appl. Phys. Lett. 68 2711

    Article  CAS  Google Scholar 

  34. Zhang T, Wen G W and Huang X X 2010 Cryst. Eng. Commun. 12 3506

    Article  CAS  Google Scholar 

  35. Chen Y, Zou J and Campbell S J 2004 Appl. Phys. Lett. 84 2430

    Article  CAS  Google Scholar 

  36. Linss V, Rodilb S, Reinkec P and Garnierd M 2004 Thin Solid Films 467 76.

    Article  CAS  Google Scholar 

  37. Mannan M A, Nagano M and Kida T 2009 J. Phys. Chem. Solids 70 20

    Article  Google Scholar 

  38. Tamikuni K 2004 J. Mater. Chem. 14 221

    Article  Google Scholar 

  39. Zhang R, Li L and Chen L 2011 J. Alloys Compd. 509 8620

    Article  CAS  Google Scholar 

  40. Lv W X, Zhang R, Xia T L, Bi H M and Shi K Y 2011 J. Nanopart. Res. 13 2351

    Article  CAS  Google Scholar 

  41. Maldonado S, Morin S and Stevenson K J 2006 Carbon 44 1429

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Union Funds of Scientific Research Fund of Heilongjiang rovincial Education Department (No. 12521421).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KEYING SHI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ZHANG, G., LIU, Z., ZHANG, L. et al. Growth and characterization of BCN nanotubes with high boron and nitrogen content. J Chem Sci 125, 1169–1176 (2013). https://doi.org/10.1007/s12039-013-0467-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-013-0467-x

Keywords

Navigation