Skip to main content
Log in

Semi-inverse method in nonlinear mechanics: application to couple shell- and beam-type oscillations of single-walled carbon nanotubes

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The resonant interaction of the nonlinear normal modes which belong to different vibration branches of the carbon nanotubes (CNTs) is studied by the efficient semi-inverse asymptotic method. Under the condition of the 1:1 resonance of the beam-like and circumferential flexure modes we obtain the dynamical equations, the solutions of which describe the coupled stationary states. They are characterized by the non-uniform distribution of the energy along the circumferential coordinate. The non-stationary solutions for the obtained equations correspond to the slow change of the energy distribution. It is shown that adequate description of considered resonance processes can be achieved in terms of new variables, which correspond to the coordinates of some domains of the CNT. These variables are the linear combinations of the shell- and beam-like normal modes. Using such variables we have analysed not only nonlinear normal modes, but also the limiting phase trajectories describing the strongly non-stationary dynamics. The evolution of the considered resonance processes with the oscillation amplitude growth is analysed by the phase portrait method and verified by the numerical integration of the respective dynamical equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  2. Anantram, M., Leonard, F.: Physics of carbon nanotube electronic devices. Rep. Prog. Phys. 69, 507 (2006)

    Article  Google Scholar 

  3. Berber, S., Kwon, Y.K., Tomanek, D.: Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84, 4613 (2000)

    Article  Google Scholar 

  4. Bogoliubov, N., Mitropolsky, Y.A.: Asymptotic Methods in the Theory of Non-linear Oscillations. Gordon and Breach, New York (1961)

    Google Scholar 

  5. Kaplunov, J., Manevitch, L.I., Smirnov, V.V.: Vibrations of an elastic cylindrical shell near the lowest cut-off frequency. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. (2016). https://doi.org/10.1098/rspa.2015.0753

  6. Kaplunov, J., Nobili, A.: A robust approach for analysing dispersion of elastic waves in an orthotropic cylindrical shell. J. Sound Vib. 401, 23–35 (2017). https://doi.org/10.1016/j.jsv.2017.04.028. http://www.sciencedirect.com/science/article/pii/S0022460X17303541

  7. Krylov, N., Bogoluibov, N.: Introduction to Non-linear Mechanics. Princeton University press, Princeton (1943)

    Google Scholar 

  8. Li, C., Chou, T.W.: Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys. Rev. B 68, 073,405 (2003)

    Article  Google Scholar 

  9. Mahan, G.D.: Oscillations of a thin hollow cylinder: carbon nanotubes. Phys. Rev. B 65, 235,402 (2002)

    Article  Google Scholar 

  10. Mandelstam, L., Papalexi, N.: Concerning the basis of a method for the approximate solution of differential equations. Zhurnal Eksperim. i Tekhnicheskoi Fiziki 4, 2 (1934)

    Google Scholar 

  11. Manevitch, L.I., Smirnov, V.V.: Limiting phase trajectories and the origin of energy localization in nonlinear oscillatory chains. Phys. Rev. E 82, 036,602 (2010)

    Article  MathSciNet  Google Scholar 

  12. Manevitch, L.I., Smirnov, V.V.: Semi-inverse method in the nonlinear dynamics. In: Mikhlin, Y. (ed.) Proceedings of the 5th International Conference on Nonlinear Dynamics, 27–30 Sept 2016, Kharkov, Ukraine, pp. 28 – 37 (2016)

  13. Manevitch, L.I., Smirnov, V.V., Romeo, F.: Non-stationary resonance dynamics of the harmonically forced pendulum. Cybern. Phys. 5(3), 91–95 (2016)

    Google Scholar 

  14. Mingo, N., Broido, D.A.: Length dependence of carbon nanotube thermal conductivity and the problem of long waves. Nano Lett. 5, 1221 (2005)

    Article  Google Scholar 

  15. Pilipchuk, V.: Analytical study of vibrating systems with strong non-linearities by employing saw-tooth time transformations. J. Sound Vib. 192(1), 43–64 (1996). https://doi.org/10.1006/jsvi.1996.0175. http://www.sciencedirect.com/science/article/pii/S0022460X96901753

  16. Sazonova, V., Yaish, Y., stnel, H., Roundy, D., Arias, T.A., McEuen, P.L.: A tunable carbon nanotube electromechanical oscillator. Nature 431, 284 (2004)

    Article  Google Scholar 

  17. Silvestre, N., Wang, C., Zhang, Y., Xiang, Y.: Sanders shell model for buckling of single-walled carbon nanotubes with small aspect ratio. Compos. Struct. 93, 1683 (2011)

    Article  Google Scholar 

  18. Smirnov, V., Manevitch, L., Strozzi, M., Pellicano, F.: Nonlinear optical vibrations of single-walled carbon nanotubes. 1. energy exchange and localization of low-frequency oscillations. Physica D Nonlinear Phenomena 325, 113–125 (2016). https://doi.org/10.1016/j.physd.2016.03.015. http://www.sciencedirect.com/science/article/pii/S0167278915300786

  19. Smirnov, V.V., Manevitch, L.I.: Large-amplitude nonlinear normal modes of the discrete sine lattices. Phys. Rev. E 95, 022,212 (2017)

    Article  MathSciNet  Google Scholar 

  20. Smirnov, V.V., Shepelev, D.S., Manevitch, L.I.: Localization of low-frequency oscillations in single-walled carbon nanotubes. Phys. Rev. Lett. 113, 135,502 (2014). https://doi.org/10.1103/PhysRevLett.113.135502

  21. van der Pol, B.: Nonlinear theory of electric oscillations. Proc. IRE 22, 1051–1086 (1934)

    Article  MATH  Google Scholar 

  22. Wang, C.Y., Ru, C.Q., Mioduchowski, A.: Applicability and limitations of simplified elastic shell equations for carbon nanotubes. J. Appl. Mech. 71, 622 (2004)

    Article  MATH  Google Scholar 

  23. Wang, J., Wang, J.S.: Carbon nanotube thermal transport: ballistic to diffusive. Appl. Phys. Lett. 88, 111,909 (2006)

    Article  Google Scholar 

  24. Zhang, Z., Koroleva, I., Manevitch, L.I., Bergman, L.A., Vakakis, A.F.: Nonreciprocal acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice. Phys. Rev. E 94, 032,214 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Russia Science Foundation (Grant 16-13-10302) for the financial supporting of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Smirnov.

Appendix

Appendix

The kinetic energy of the CNT can be written as follows:

$$\begin{aligned} E_\mathrm{kin} = \frac{1}{2} \int _{0}^{1} \int _{0}^{2\pi } \left( \left( \frac{\partial u}{\partial t} \right) ^2 + \left( \frac{\partial v}{\partial t} \right) ^2 + \left( \frac{\partial w}{\partial t} \right) ^2 \right) d \xi d \theta . \end{aligned}$$

Taking into account the energy of elastic deformation (1), one can write the equations of motion, the linearized approximation of which can be represented as follows:

$$\begin{aligned} \frac{\partial ^2 u}{\partial t^2}= & {} -\,\alpha ^2 \frac{\partial ^2 u}{\partial \xi ^2}-\frac{1}{2} \frac{\partial ^2 u}{\partial \theta ^2}+\,\alpha (1-\nu ) \left( \frac{\partial ^2 v}{\partial \xi \partial \theta } \right) \\&+\,\frac{1}{96} \beta ^2 (\nu -1) \left( \frac{\partial ^2 u}{\partial \theta ^2}-3 \alpha \frac{\partial ^2 v}{\partial \xi \partial \theta }+4 \alpha \frac{\partial ^3 w}{\partial \xi \partial \theta ^2} \right) \\&-\,\alpha \nu \left( \frac{\partial ^2 v}{\partial \xi \partial \theta }+\frac{\partial w}{\partial \xi } \right) \\ \frac{\partial ^2 v}{\partial t ^2}= & {} -\,\alpha \nu \frac{\partial ^2 u}{\partial \xi \partial \theta }-\frac{1}{2} \alpha (1-\nu ) \left( \frac{\partial ^2 u}{\partial \xi \partial \theta } + \alpha \frac{\partial ^2 v}{\partial \xi ^2} \right) \\&+\,\frac{1}{32} \alpha \beta ^2 (\nu -1) \left( -\frac{\partial ^2 u}{\partial \xi \partial \theta } + 3 \alpha \frac{\partial ^2 v}{\partial \xi ^2} - 4 \alpha \frac{\partial ^3 w}{\partial \xi ^2 \partial \theta } \right) \\&-\,\frac{1}{12} \beta ^2 \left( \frac{\partial ^2 v}{\partial \theta ^2}- \alpha ^2 \nu \frac{\partial ^3 w}{\partial \xi ^2 \partial \theta } -\,\frac{\partial ^3 w}{\partial \theta ^3} \right) \\&- \left( \frac{\partial ^2 v }{\partial \theta ^2}+ \frac{\partial w}{\partial \theta } \right) \\ \frac{\partial ^2 w}{\partial t^2}= & {} \frac{1}{24} \alpha \beta ^2 (\nu -1) \left( -\frac{\partial ^3 u}{\partial \xi \partial \theta ^2} +\,3 \alpha \frac{\partial ^3 v}{\partial \xi ^2 \theta }-4 \alpha \frac{\partial ^4 w}{\partial \xi ^4} \right) \\&+\, \left( \alpha \nu \frac{\partial u}{\partial \xi } + \frac{\partial v}{\partial \theta } + w \right) \\&-\, \frac{1}{12} \beta ^2 \left( \frac{\partial ^3 v}{\partial \theta ^3} - \alpha ^2 \nu \frac{\partial ^4 w}{\partial \xi ^2 \partial \theta ^2} - \frac{\partial ^4 w}{\partial \theta ^4} \right) \\&+\,\frac{1}{12} \alpha ^2 \beta ^2 \left( -\nu \frac{\partial ^3 v}{\partial \xi ^2 \partial \theta }-\alpha ^2 \frac{\partial ^4 w}{\partial \xi ^4}+ \nu \frac{\partial ^4 w}{\partial \xi ^2 \partial \theta ^2} \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, V.V., Manevitch, L.I. Semi-inverse method in nonlinear mechanics: application to couple shell- and beam-type oscillations of single-walled carbon nanotubes. Nonlinear Dyn 93, 205–218 (2018). https://doi.org/10.1007/s11071-017-3893-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3893-3

Keywords

Navigation