Skip to main content
Log in

Dynamic modeling and vibration control of a three-dimensional flexible string with variable length and spatiotemporally varying parameters subject to input constraints

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a three-dimensional dynamic model is developed for a flexible string system with variable length as well as spatiotemporally varying parameters. The dynamic system model is described by coupled partial differential equations and ordinary differential equations. On the basis of the established model, a boundary control method is proposed via backstepping technology and Nussbaum functions to eliminate the vibration of the three-dimensional string with input constraints and disturbances. Deformations of the three-dimensional string system can be verified to converge to small neighborhoods of zero under the proposed control. Input constraints can also be guaranteed by applying smooth hyperbolic tangent function. Simulation results present that the vibration suppression of the flexible string can be achieved and input constraints can be ensured with the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. He, W., Ge, S.S.: Cooperative control of a nonuniform gantry crane with constrained tension. Automatica 66(4), 146–154 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Suweken, G., van Horssen, W.T.: On the transversal vibrations of a conveyor belt with a low and time-varying velocity. Part I: the string-like case. J. Sound. Vib. 264(1), 117–133 (2003)

    Article  MATH  Google Scholar 

  3. Zhu, W.D., Ren, H.: An accurate spatial discretization and substructure method with application to moving elevator cable-car systems-Part I: methodogy. J. Vib. Acoust. 135(5), 051036 (2013)

    Article  Google Scholar 

  4. Zhu, W.D., Ren, H.: An accurate spatial discretization and substructure method with application to moving elevator cable-car systems-Part II: application. J. Vib. Acoust. 135(5), 051037 (2013)

    Article  Google Scholar 

  5. Sandilo, S.H., van Horssen, W.T.: On variable length induced vibrations of a vertical string. J. Sound Vib. 333(11), 2432–2449 (2014)

    Article  Google Scholar 

  6. Sandilo, S.H., van Horssen, W.T.: On a cascade of autoresonances in an elevator cable system. Nonlinear Dyn. 80(3), 1613–1630 (2015)

    Article  MATH  Google Scholar 

  7. Kucuk, I., Sadek, I.: Active vibration control of an elastically connected double-string continuous system. J. Frank. Inst. 344(5), 684–697 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Alsahlani, A., Mukherjee, R.: Vibration control of a string using a scabbard-like actuator. J. Sound Vib. 330(12), 2721–2732 (2011)

    Article  Google Scholar 

  9. Armaou, A., Christofides, P.D.: Wave suppression by nonlinear finite-dimensional control. Chem. Eng. Sci. 55(14), 2627–2640 (2000)

    Article  Google Scholar 

  10. Shahruz, S.M., Kurmaji, D.A.: Vibration suppression of a non-linear axially moving string by boundary control. J. Sound Vib. 201(1), 145–152 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lee, S.-Y., Mote, C.D.: Vibration control of an axially moving string by boundary control. J. Dyn. Syst. Meas. Control. 118(1), 66–74 (1996)

    Article  MATH  Google Scholar 

  12. Zhang, S., He, W., Huang, D.: Active vibration control for a flexible string system with input backlash. IET Control Theory Appl. 10(7), 800–805 (2016)

    Article  MathSciNet  Google Scholar 

  13. Ge S.S., Zhang S., He W.: Vibration control of a coupled nonlinear string system in transverse and longitudinal directions. In: 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, pp. 3742–3747 (2011)

  14. Foda, M.A.: Vibration control and suppression of an axially moving string. J. Vib. Control. 18(1), 58–75 (2012)

    Article  MathSciNet  Google Scholar 

  15. Nguyen Q.C., Hong K.-S.: Longitudinal and transverse vibration control of an axially moving string. In: 5th International Conference on Cybernetics and Intelligent Systems, Qingdao, China, pp. 24–29 (2011)

  16. Sandilo S.H., van Horssen W.T.: On boundary damping for an axially moving beam and on the variable length induced vibrations of an elevator cable. In: European Nonlinear Dynamics Conference, Rome, Italy (2011)

  17. Zhang, S., He, W., Ge, S.S.: Modeling and control of a nonuniform vibrating string under spatiotemporally varying tension and disturbance. IEEE/ASME Trans. Mech. 17(6), 1196–1203 (2012)

    Article  Google Scholar 

  18. Rahn, C.D., Zhang, F., Joshi, S., Dawson, D.: Asymptotically stabilizing angle feedback for a flexible cable gantry crane. J. Dyn. Syst. Meas. Control. 121(3), 563–565 (1999)

    Article  Google Scholar 

  19. Takagi, K., Nishimura, H.: Gain-scheduled control of a tower crane considering varying load-rope length. JSME Int. J. Ser. C. 42(4), 914–921 (1999)

    Article  Google Scholar 

  20. Tuan, L.A., Lee, S.-G., Dang, V.-H., Moon, S., Kim, B.S.: Partial feedback linearization control of a three-dimensional overhead crane. Int. J. Control Autom. Syst. 11(4), 718–727 (2013)

    Article  Google Scholar 

  21. He, W., Qin, H., Liu, J.-K.: Modelling and vibration control for a flexible string system in three-dimensional space. IET Control Theory Appl. 9(16), 1–9 (2015)

    Article  MathSciNet  Google Scholar 

  22. Hamed, Y.S., Amer, Y.A.: Nonlinear saturation controller for vibration supersession of a nonlinear composite beam. J. Mech. Sci. Technol. 28(8), 2987–3002 (2014)

    Article  Google Scholar 

  23. Sun, N., Fang, Y., Zhang, X.: Energy coupling output feedback control of 4-DOF underactuated cranes with saturated inputs. Automatica 49(5), 1318–1325 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wen, C., Zhou, J., Liu, Z., Su, H.: Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans. Autom. Control. 56(7), 1672–1678 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. He, W., Meng, T., He, X., Ge, S.S.: Unified iterative learning control for flexible structures with input constraints. Automatica 86, 326–336 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, Z., Liu, J., He, W.: Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint. Automatica 77, 302–310 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nussbaum, R.D.: Nussbaum function and its application in system stabilization. Syst. Control Lett. 3(5), 243–246 (1983)

    Article  Google Scholar 

  28. Hong, K.-S., Park, H.: Boundary control of container cranes as an axially moving string system. IFAC Proc. 38(1), 132–137 (2005)

    Article  Google Scholar 

  29. Zhu, W.D., Ni, J., Huang, J.: Active control of translating media with arbitrarily varying length. J. Vib. Acoust. 123(3), 347–358 (2001)

    Article  Google Scholar 

  30. Rahn, C.D.: Mechatronic control of distributed noise and vibration: a Lyapunov approach. Springer, New York (2001)

    Book  MATH  Google Scholar 

  31. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1959)

    MATH  Google Scholar 

  32. Polycarpou M.M., Ioannou P.A.: A robust adaptive nonlinear control design. In: American Control Conference, San Francisco, USA (1993)

  33. Zhou, J., Wen, C., Zhang, Y.: Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control. 49(10), 1751–1757 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ge, S.S., Wang, C., Lee, T.H.: Adaptive backstepping control of a class of chaotic systems. Int. J. Bifurc. Chaos. 10(5), 1149–1156 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lee, H.: Robust Adaptive fuzzy control by backstepping for a class of MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 19(2), 265–275 (2011)

    Article  Google Scholar 

  36. Zhang, Y., Wen, C., Soh, Y.C.: Discrete-time robust backstepping adaptive control for nonlinear time-varying systems. IEEE Trans. Autom. Control. 45(9), 1749–1755 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhou, J., Wen, C., Zhang, Y.: Adaptive output control of a class of time-varying uncertain nonlinear systems. Nonlinear Dyn. Syst. Theory 5(3), 285–298 (2005)

    MathSciNet  MATH  Google Scholar 

  38. Mudgett, D.R., Morse, A.S.: Adaptive stabilization of linear systems with unknown high frequency gains. IEEE Trans. Autom. Control. 30(6), 549–554 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, Z., Liu, J., He, W.: Robust adaptive fault tolerant control for a linear cascaded ODE-beam systems. Automatica 98, 42–50 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu, Z., Liu, J., He, W.: Dynamic modeling and vibration control for a nonlinear three-dimensional flexible manipulator. Int. J. Robust and Nonlinear Control 28(13), 3927–3945 (2018)

    Article  MATH  Google Scholar 

  41. Nguyen, Q.C., Hong, K.-S.: Simultaneous control of longitudinal and transverse vibrations of an axially moving string with velocity tracking. J. Sound Vib. 331(13), 3006–3019 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Fund for the National Natural Science Foundation of China [Grant Number 61873296].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinkun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix 1

Appendix 1

To analyze the system stability, we define

$$\begin{aligned} V_2 \left( t \right)= & {} \frac{1}{2}\alpha \rho \int _0^l \left[ \left( {\frac{\hbox {D}u\left( {s,t} \right) }{\hbox {D}t}} \right) ^{2}+\left( {\frac{\hbox {D}v\left( {s,t} \right) }{\hbox {D}t}} \right) ^{2} \right. \nonumber \\&\left. +\left( {\frac{\hbox {D}w\left( {s,t} \right) }{\hbox {D}t}} \right) ^{2} \right] \hbox {d}s \nonumber \\&+\,\frac{1}{2}\alpha \int _0^l {\left( {T\left( {s,t} \right) u_s^2 \left( {s,t} \right) +T\left( {s,t} \right) v_s^2 \left( {s,t} \right) } \right) \hbox {d}s} \nonumber \\&+\,\frac{1}{2}\alpha \int _0^l EA\left( s \right) \left( w_s \left( {s,t} \right) +\frac{1}{2}u_s^2 \left( {s,t} \right) \right. \nonumber \\&\left. +\,\frac{1}{2}v_s^2 \left( {s,t} \right) \right) ^{2}\hbox {d}s \end{aligned}$$
(A1)
$$\begin{aligned} V_3 \left( t \right)= & {} \beta \rho \int _0^l s\left( \frac{\hbox {D}u\left( {s,t} \right) }{\hbox {D}t}u_s \left( {s,t} \right) +\frac{\hbox {D}v\left( {s,t} \right) }{\hbox {D}t}v_s \left( {s,t} \right) \right. \nonumber \\&\left. +\,\frac{\hbox {D}w\left( {s,t} \right) }{\hbox {D}t}w_s \left( {s,t} \right) \right) \hbox {d}s \end{aligned}$$
(A2)

where \(\beta >0\).

A new positive Lyapunov function is considered as

$$\begin{aligned} V\left( t \right) =V_1 \left( t \right) +V_2 \left( t \right) +V_3 \left( t \right) \end{aligned}$$
(A3)

Since \(2w_s^2 \left( {s,t} \right) \le u_s^2 \left( {s,t} \right) \) and \(2w_s^2 \left( {s,t} \right) \le v_s^2 \left( {s,t} \right) \) [41], by using Lemma 2.1 we can obtain

$$\begin{aligned}&-\frac{1}{4\sigma _0 }\int _0^l {u_s^2 \left( {s,t} \right) \hbox {d}s} -\frac{\sigma _0 }{2}\int _0^l {u_s^4 \left( {s,t} \right) \hbox {d}s} \nonumber \\&\quad \le \int _0^l {w_s \left( {s,t} \right) u_s^2 \left( {s,t} \right) \hbox {d}s} \le \frac{1}{4\sigma _0 }\int _0^l {u_s^2 \left( {s,t} \right) \hbox {d}s} \nonumber \\&\quad +\,\frac{\sigma _0 }{2}\int _0^l {u_s^4 \left( {s,t} \right) \hbox {d}s} \end{aligned}$$
(A4)
$$\begin{aligned}&-\frac{1}{4\sigma _0 }\int _0^l {v_s^2 \left( {s,t} \right) \hbox {d}s} -\frac{\sigma _0 }{2}\int _0^l {v_s^4 \left( {s,t} \right) \hbox {d}s} \nonumber \\&\quad \le \int _0^l {w_s \left( {s,t} \right) v_s^2 \left( {s,t} \right) \hbox {d}s} \le \frac{1}{4\sigma _0 }\int _0^l {v_s^2 \left( {s,t} \right) \hbox {d}s} \nonumber \\&\qquad +\,\frac{\sigma _0 }{2}\int _0^l {v_s^4 \left( {s,t} \right) \hbox {d}s} \end{aligned}$$
(A5)

where \(\sigma _0 >0\).

According to Inequalities (A4) and (A5), \(V_2 \left( t \right) \) can be rewritten as

$$\begin{aligned} V_2 \left( t \right)= & {} \frac{1}{2}\alpha \rho \int _0^l \left[ \left( {\frac{\hbox {D}u\left( {s,t} \right) }{\hbox {D}t}} \right) ^{2}+\left( {\frac{\hbox {D}v\left( {s,t} \right) }{\hbox {D}t}} \right) ^{2}\right. \nonumber \\&\left. +\left( {\frac{\hbox {D}w\left( {s,t} \right) }{\hbox {D}t}} \right) ^{2} \right] \hbox {d}s \nonumber \\&+\, \frac{1}{2}\alpha \int _0^l {\left( {T\left( {s,t} \right) u_s^2 \left( {s,t} \right) +T\left( {s,t} \right) v_s^2 \left( {s,t} \right) } \right) \hbox {ds}} \nonumber \\&+\,\frac{1}{2}\alpha \int _0^l EA\left( s \right) \left( w_s^2 \left( {s,t} \right) +\frac{1}{4}u_s^4 \left( {s,t} \right) \right. \nonumber \\&+\frac{1}{4}v_s^4 \left( {s,t} \right) +\,w_s \left( {s,t} \right) u_s^2 \left( {s,t} \right) \nonumber \\&\left. +w_s \left( {s,t} \right) v_s^2 \left( {s,t} \right) +\frac{1}{2}u_s^2 \left( {s,t} \right) v_s^2 \left( {s,t} \right) \right) \hbox {ds} \nonumber \\\le & {} \frac{1}{2}\alpha \rho \int _0^l \left[ \left( {\frac{\hbox {D}u\left( {s,t} \right) }{\hbox {D}t}} \right) ^{2}+\left( {\frac{\hbox {D}v\left( {s,t} \right) }{\hbox {D}t}} \right) ^{2} \right. \nonumber \\&\left. +\,\left( {\frac{\hbox {D}w\left( {s,t} \right) }{\hbox {D}t}} \right) ^{2} \right] \hbox {d}s \nonumber \\&+\,\left( {\frac{1}{2}\alpha T_{\max } +\frac{1}{2}\alpha EA_{\max } \frac{1}{4\varepsilon }} \right) \int _0^l {u_s^2 \left( {s,t} \right) \hbox {ds}} \nonumber \\&+\,\left( {\frac{1}{2}\alpha T_{\max } +\frac{1}{2}\alpha EA_{\max } \frac{1}{4\varepsilon }} \right) \int _0^l {v_s^2 \left( {s,t} \right) \hbox {ds}} \nonumber \\&+\,\frac{1}{2}\alpha EA_{\max } \int _0^l {w_s^2 \left( {s,t} \right) \hbox {d}s} \nonumber \\&+\,\left( {\frac{1}{8}\alpha EA_{\max } +\frac{1}{4}\alpha EA_{\max } \varepsilon } \right) \int _0^l {u_s^4 \left( {s,t} \right) \hbox {d}s} \nonumber \\&+\,\left( {\frac{1}{8}\alpha EA_{\max } +\frac{1}{4}\alpha EA_{\max } \varepsilon } \right) \int _0^l {v_s^4 \left( {s,t} \right) \hbox {d}s} \nonumber \\&+\,\frac{1}{4}\alpha EA_{\max } \int _0^l {u_s^2 \left( {s,t} \right) v_s^2 \left( {s,t} \right) \hbox {d}s} \nonumber \\\le & {} \gamma _1 \theta \left( t \right) \end{aligned}$$
(A6)

where \(\varepsilon >0\) and

$$\begin{aligned} \theta \left( t \right)= & {} \int _0^l \left[ \left( {\frac{\hbox {D}u\left( {s,t} \right) }{\hbox {D}t}} \right) ^{2}+\left( {\frac{\hbox {D}v\left( {s,t} \right) }{\hbox {D}t}} \right) ^{2} \right. \nonumber \\&+\left( {\frac{\hbox {D}w\left( {s,t} \right) }{\hbox {D}t}} \right) ^{2}\nonumber \\&\left. +\,u_s^2 \left( {s,t} \right) +v_s^2 \left( {s,t} \right) +w_s^2 \left( {s,t} \right) \right. \nonumber \\&\left. {+\,u_s^4 \left( {s,t} \right) +v_s^4 \left( {s,t} \right) +u_s^2 \left( {s,t} \right) v_s^2 \left( {s,t} \right) } \right] \hbox {d}s \\ \gamma _1= & {} \frac{1}{2}\alpha \max \left\{ \rho ,T_{\max } +EA_{\max } \frac{1}{4\varepsilon },EA_{\max }, \right. \nonumber \\&\left. \frac{1}{2}EA_{\max } \left( {\frac{1}{2}+\varepsilon } \right) ,\frac{1}{2}EA_{\max } \right\} >0 \end{aligned}$$

Let the positive constant \(\varepsilon \) satisfying \(T_{\min } -EA_{\max } \frac{1}{4\varepsilon }\ge 0\) and \(\frac{1}{2}EA_{\min } -\varepsilon EA_{\max } \ge 0\), similarly, we can obtain

$$\begin{aligned} V_2 \left( t \right) \ge \gamma _2 \theta \left( t \right) \end{aligned}$$
(A7)

where

$$\begin{aligned} \gamma _2= & {} \frac{1}{2}\alpha \min \left\{ \rho ,T_{\min } -\frac{1}{4\varepsilon }EA_{\max }, \right. \\&EA_{\min } ,\frac{1}{2}\left( {\frac{1}{2}EA_{\min } -\varepsilon EA_{\max } } \right) \left. ,\frac{1}{2}EA_{\min } \right\} \\&>0. \end{aligned}$$

Then we focus our attention on \(V_3 \left( t \right) \) in Equation (A2) which satisfies the following inequality

$$\begin{aligned} \left| {V_3 \left( t \right) } \right|\le & {} \frac{1}{2}\beta \rho L\int _0^l \left( \left( {\frac{\hbox {D}u\left( {s,t} \right) }{\hbox {D}t}} \right) ^{2}+u_s^2 \left( {s,t} \right) \right. \nonumber \\&\left. +\,\left( {\frac{\hbox {D}v\left( {s,t} \right) }{\hbox {D}t}} \right) ^{2} \right. \left. +v_s^2 \left( {s,t} \right) +\left( {\frac{\hbox {D}w\left( {s,t} \right) }{\hbox {D}t}} \right) ^{2} \right. \nonumber \\&\left. +\,w_s^2 \left( {s,t} \right) \right) \hbox {d}s \quad \le \beta _1 \theta \left( t \right) \end{aligned}$$
(A8)

where \(\beta _1 =\frac{1}{2}\beta \rho L>0\).

Therefore, from Inequalities (A6A8), we have

$$\begin{aligned} \left( {\gamma _2 -\beta _1 } \right) \theta \left( t \right) \le V_2 \left( t \right) +V_3 \left( t \right) \le \left( {\beta _1 +\gamma _1 } \right) \theta \left( t \right) \end{aligned}$$
(A9)

Considering that \(\beta _1 \) is a positive weighting constant satisfying \(0<\beta _1 \le \gamma _2 \) and let \(\eta _1 =\gamma _2 -\beta _1 \), \(\eta _2 =\gamma _1 +\beta _1 \), we further have

$$\begin{aligned} \lambda _1 \left( {\theta \left( t \right) +V_1 \left( t \right) } \right) \le V\left( t \right) \le \lambda _2 \left( {\theta \left( t \right) +V_1 \left( t \right) } \right) \end{aligned}$$
(A10)

where \(\lambda _1 =\min \{ {1,\eta _1 } \}>0\), \(\lambda _2 =\max \{ {1,\eta _2 } \}>0\).

Differentiating Eq. (A1) leads to

$$\begin{aligned} {\dot{V}}_2 \left( t \right)= & {} \alpha \rho \int _0^l \left( \frac{\hbox {D}v\left( {s,t} \right) }{\hbox {D}t}\frac{\hbox {D}^{2}v\left( {s,t} \right) }{\hbox {D}t^{2}} \right. \nonumber \\&+\,\frac{\hbox {D}u\left( {s,t} \right) }{\hbox {D}t}\frac{\hbox {D}^{2}u\left( {s,t} \right) }{\hbox {D}t^{2}}\nonumber \\&\left. +\frac{\hbox {D}w\left( {s,t} \right) }{\hbox {D}t}\frac{\hbox {D}^{2}w\left( {s,t} \right) }{\hbox {D}t^{2}} \right) \hbox {d}s \nonumber \\&+\, \frac{1}{2}\alpha \int _0^l \left( {\dot{T}} \left( {s,t} \right) u_s^2 \left( {s,t} \right) \right. \nonumber \\&\left. \hbox {+\,2}T\left( {s,t} \right) u_s \left( {s,t} \right) {\dot{u}}_s \left( {s,t} \right) +{\dot{T}}\left( {s,t} \right) v_s^2 \left( {s,t} \right) \right. \nonumber \\&\left. {+ \,2T\left( {s,t} \right) v_s \left( {s,t} \right) {\dot{v}}_s \left( {s,t} \right) } \right) \hbox {d}s \nonumber \\&+\, \alpha \int _0^l {EA\left( s \right) \left( {w_s \left( {s,t} \right) +\frac{1}{2}u_s^2 \left( {s,t} \right) +\frac{1}{2}v_s^2 \left( {s,t} \right) } \right) } \nonumber \\&\quad \left( {{\dot{w}}_s \left( {s,t} \right) +u_s \left( {s,t} \right) {\dot{u}}_s \left( {s,t} \right) +v_s \left( {s,t} \right) {\dot{v}}_s \left( {s,t} \right) } \right) \hbox {d}s \nonumber \\&+\,\frac{1}{2}\alpha {\dot{l}}EA\left( l \right) \left( {w_s \left( {l,t} \right) +\frac{1}{2}u_s^2 \left( {l,t} \right) +\frac{1}{2}v_s^2 \left( {l,t}\right) } \right) ^{2} \nonumber \\&-\,\frac{1}{2}\alpha {\dot{l}}EA\left( 0 \right) \left( {w_s \left( {0,t} \right) +\frac{1}{2}u_s^2 \left( {0,t} \right) +\frac{1}{2}v_s^2 \left( {0,t} \right) } \right) ^{2} \nonumber \\&+\,\frac{1}{2}\alpha {\dot{l}}\left( {T\left( {l,t} \right) u_s^2 \left( {l,t} \right) +T\left( {l,t} \right) v_s^2 \left( {l,t} \right) } \right) \nonumber \\&-\,\frac{1}{2}\alpha {\dot{l}}\left( {T\left( {0,t} \right) u_s^2 \left( {0,t} \right) +T\left( {0,t} \right) v_s^2 \left( {0,t} \right) } \right) \nonumber \\ \end{aligned}$$
(A11)

Then, substituting Equations (6)-(8) into Equation (A11), we have the following equation

$$\begin{aligned} \dot{V}_2 \left( t \right)= & {} \alpha \left( {\dot{u}\left( {l,t} \right) +\dot{l}u_s \left( {l,t} \right) } \right) T\left( {l,t} \right) u_s \left( {l,t} \right) \nonumber \\&+\,\alpha \left( {\dot{u}\left( {l,t} \right) +\dot{l}u_s \left( {l,t} \right) } \right) \frac{1}{2}EA\left( l \right) u_s^3 \left( {l,t} \right) \nonumber \\&+\,\frac{\alpha }{2}\int _0^l {\dot{l}u_s^2 \left( {s,t} \right) T_s \left( {s,t} \right) \hbox {d}s} \nonumber \\&+\,\alpha \int _0^l {\dot{l}\frac{1}{4}EA_s \left( s \right) u_s^2 \left( {s,t} \right) v_s^2 \left( {s,t} \right) \hbox {d}s} \nonumber \\&+\,\alpha \int _0^l {\dot{l}\frac{1}{8}EA_s \left( s \right) u_s^4 \left( {s,t} \right) \hbox {d}s} \nonumber \\&+\,\frac{\alpha }{2}\int _0^l {\dot{l}EA_s \left( s \right) w_s \left( {s,t} \right) u_s^2 \left( {s,t} \right) \hbox {d}s} \nonumber \\&+\,\alpha \left( {\dot{u}\left( {l,t} \right) +\dot{l}u_s \left( {l,t} \right) } \right) \frac{1}{2}EA\left( l \right) u_s \left( {l,t} \right) v_s^2 \left( {l,t} \right) \nonumber \\&+\,\alpha \left( {\dot{u}\left( {l,t} \right) +\dot{l}u_s \left( {l,t} \right) } \right) EA\left( l \right) w_s \left( {l,t} \right) u_s \left( {l,t} \right) \nonumber \\&-\,\alpha \left( {\dot{u}\left( {0,t} \right) +\dot{l}u_s \left( {0,t} \right) } \right) T\left( {0,t} \right) u_s \left( {0,t} \right) \nonumber \\&-\,\alpha \left( {\dot{u}\left( {0,t} \right) +\dot{l}u_s \left( {0,t} \right) } \right) \frac{1}{2}EA\left( 0 \right) u_s^3 \left( {0,t} \right) \nonumber \\&-\,\alpha \left( {\dot{u}\left( {0,t} \right) +\dot{l}u_s \left( {0,t} \right) } \right) \frac{1}{2}EA\left( 0 \right) u_s \left( {0,t} \right) v_s^2 \left( {0,t} \right) \nonumber \\&-\,\alpha \left( {\dot{u}\left( {0,t} \right) +\dot{l}u_s \left( {0,t} \right) } \right) EA\left( 0 \right) w_s \left( {0,t} \right) u_s \left( {0,t} \right) \nonumber \\&+\,\alpha \left( {\dot{v}\left( {l,t} \right) +\dot{l}v_s \left( {l,t} \right) } \right) T \left( {l,t} \right) v_s \left( {l,t} \right) \nonumber \\&+\,\alpha \left( {\dot{v}\left( {l,t} \right) +\dot{l}v_s \left( {l,t} \right) } \right) \frac{1}{2}EA\left( l \right) v_s^3 \left( {l,t} \right) \nonumber \\&+\,\frac{\alpha }{2}\int _0^l {\dot{l}v_s^2 \left( {s,t} \right) T_s \left( {s,t} \right) \hbox {d}s} \nonumber \\&+\,\alpha \int _0^l {\dot{l}\frac{1}{8}EA_s \left( s \right) v_s^4 \left( {s,t} \right) \hbox {d}s} \nonumber \\&+\,\alpha \left( {\dot{v}\left( {l,t} \right) +\dot{l}v_s \left( {l,t} \right) } \right) \frac{1}{2}EA\left( l \right) u_s^2 \left( {l,t} \right) v_s \left( {l,t} \right) \nonumber \\&+\,\alpha \left( {\dot{v}\left( {l,t} \right) +\dot{l}v_s \left( {l,t} \right) } \right) EA\left( l \right) w_s \left( {l,t} \right) v_s \left( {l,t} \right) \nonumber \\&-\,\alpha \left( {\dot{v}\left( {0,t} \right) +\dot{l}v_s \left( {0,t} \right) } \right) T\left( {0,t} \right) v_s \left( {0,t} \right) \nonumber \\&-\,\alpha \left( {\dot{v}\left( {0,t} \right) +\dot{l}v_s \left( {0,t} \right) } \right) \frac{1}{2}EA\left( 0 \right) v_s^3 \left( {0,t} \right) \nonumber \\&-\,\alpha \left( {\dot{v}\left( {0,t} \right) +\dot{l}v_s \left( {0,t} \right) } \right) \frac{1}{2}EA\left( 0 \right) u_s^2 \left( {0,t} \right) v_s \left( {0,t} \right) \nonumber \\&-\,\alpha \left( {\dot{v}\left( {0,t} \right) +\dot{l}v_s \left( {0,t} \right) } \right) EA\left( 0 \right) w_s \left( {0,t} \right) v_s \left( {0,t} \right) \nonumber \\&+\,\alpha \left( {\dot{w}\left( {l,t} \right) +\dot{l}w_s \left( {l,t} \right) } \right) EA\left( l \right) w_s \left( {l,t} \right) \nonumber \\&+\,\alpha \left( {\dot{w}\left( {l,t} \right) +\dot{l}w_s \left( {l,t} \right) } \right) \frac{1}{2}EA\left( l \right) u_s^2 \left( {l,t} \right) \nonumber \\&+\,\alpha \left( {\dot{w}\left( {l,t} \right) +\dot{l}w_s \left( {l,t} \right) } \right) \frac{1}{2}EA\left( l \right) v_s^2 \left( {l,t} \right) \nonumber \\&-\,\alpha \left( {\dot{w}\left( {0,t} \right) +\dot{l}w_s \left( {0,t} \right) } \right) EA\left( 0 \right) w_s \left( {0,t} \right) \nonumber \\&-\,\alpha \left( {\dot{w}\left( {0,t} \right) +\dot{l}w_s \left( {0,t} \right) } \right) \frac{1}{2}EA\left( 0 \right) u_s^2 \left( {0,t} \right) \nonumber \\&-\,\alpha \left( {\dot{w}\left( {0,t} \right) +\dot{l}w_s \left( {0,t} \right) } \right) \frac{1}{2}EA\left( 0 \right) v_s^2 \left( {0,t} \right) \nonumber \\&+\,\frac{1}{2}\alpha \int _0^l {\dot{l}EA_s \left( s \right) w_s^2 \left( {s,t} \right) \hbox {d}s} \nonumber \\&+\,\frac{\alpha }{2}\int _0^l {\dot{l}EA_s \left( s \right) w_s \left( {s,t} \right) v_s^2 \left( {s,t} \right) \hbox {d}s} \nonumber \\&+\, \frac{1}{2}\alpha \int _0^l {\left( {\dot{T}\left( {s,t} \right) u_s^2 \left( {s,t} \right) +\dot{T}\left( {s,t} \right) v_s^2 \left( {s,t} \right) } \right) \hbox {d}s}\nonumber \\ \end{aligned}$$
(A12)

Then, differentiating Equation (A2) and substituting Eqs. (68), we arrive at

$$\begin{aligned} {\dot{V}}_3 \left( t \right)= & {} \frac{1}{2}\beta lT\left( {l,t} \right) u_s^2 \left( {l,t} \right) \nonumber \\&-\frac{\beta }{2}\int _0^l {T\left( {s,t} \right) u_s^2 \left( {s,t} \right) } \hbox {ds} \nonumber \\&+\,\frac{\beta }{2}\int _0^l {sT_s \left( {s,t} \right) u_s^2 \left( {s,t} \right) \hbox {d}s} \nonumber \\&+\,\beta l\frac{3}{8}EA\left( l \right) u_s^4 \left( {l,t} \right) \nonumber \\&-\,\beta \int _0^l {\frac{3}{8}EA\left( s \right) u_s^4 \left( {s,t} \right) \hbox {d}s} \nonumber \\&+\,\frac{1}{8}\beta \int _0^l {sEA_s \left( s \right) u_s^4 \left( {s,t} \right) \hbox {d}s} \nonumber \\&+\,\beta lEA\left( l \right) w_s \left( {l,t} \right) u_s^2 \left( {l,t} \right) \nonumber \\&-\,\beta \int _0^l {EA\left( s \right) w_s \left( {s,t} \right) u_s^2 \left( {s,t} \right) \hbox {d}s} \nonumber \\&+\,\beta l\frac{3}{4}EA\left( l \right) u_s^2 \left( {l,t} \right) v_s^2 \left( {l,t} \right) \nonumber \\&-\,\beta \int _0^l {\frac{3}{4}EA\left( s \right) u_s^2 \left( {s,t} \right) v_s^2 \left( {s,t} \right) \hbox {d}s} \nonumber \\&+\,\beta \rho l{\dot{l}}\left( {{\dot{u}}\left( {l,t} \right) +{\dot{l}}u_s \left( {l,t} \right) } \right) u_s \left( {l,t} \right) \nonumber \\&+\,\beta \int _0^l {s\frac{1}{4}EA_s \left( s \right) u_s^2 \left( {s,t} \right) v_s^2 \left( {s,t} \right) \hbox {d}s} \nonumber \\&-\,\frac{1}{2}\beta \rho l{\dot{l}}^{2}u_s^2 \left( {l,t} \right) +\frac{1}{2}\beta \rho \int _0^l {{\dot{l}}^{2}u_s^2 \left( {s,t} \right) \hbox {d}s} \nonumber \\&\hbox {+}\,\frac{1}{2}\beta \rho l{\dot{u}}^{2}\left( {l,t} \right) -\frac{1}{2}\beta \rho \int _0^l {{\dot{u}}^{2}\left( {s,t} \right) \hbox {d}s} \nonumber \\&+\,\frac{1}{2}\beta lT\left( {l,t} \right) v_s^2 \left( {l,t} \right) \nonumber \\&-\frac{\beta }{2}\int _0^l {T\left( {s,t} \right) v_s^2 \left( {s,t} \right) } \hbox {ds} \nonumber \\&+\,\frac{\beta }{2}\int _0^l {sT_s \left( {s,t} \right) v_s^2 \left( {s,t} \right) \hbox {d}s}\nonumber \\&+\beta l\frac{3}{8}EA\left( l \right) v_s^4 \left( {l,t} \right) \nonumber \\&-\,\beta \int _0^l {\frac{3}{8}EA\left( s \right) v_s^4 \left( {s,t} \right) \hbox {d}s} \nonumber \\&+\,\frac{1}{8}\beta \int _0^l {sEA_s \left( s \right) v_s^4 \left( {s,t} \right) \hbox {d}s} \nonumber \\&+\,\beta \rho l{\dot{l}}\left( {{\dot{v}}\left( {l,t} \right) +{\dot{l}}v_s \left( {l,t} \right) } \right) v_s \left( {l,t} \right) \nonumber \\&+\,\beta lEA\left( l \right) w_s \left( {l,t} \right) v_s^2 \left( {l,t} \right) \nonumber \\&-\,\beta \int _0^l {EA\left( s \right) w_s \left( {s,t} \right) v_s^2 \left( {s,t} \right) \hbox {d}s} \nonumber \\&-\,\frac{1}{2}\beta \rho l{\dot{l}}^{2}v_s^2 \left( {l,t} \right) \nonumber \\&+\,\frac{1}{2}\beta \rho \int _0^l {{\dot{l}}^{2}v_s^2 \left( {s,t} \right) \hbox {d}s} \hbox {+}\frac{1}{2}\beta \rho l{\dot{v}}^{2}\left( {l,t} \right) \nonumber \\&-\,\frac{1}{2}\beta \rho \int _0^l {{\dot{v}}^{2}\left( {s,t} \right) \hbox {d}s} +\frac{1}{2}\beta lEA\left( l \right) w_s^2 \left( {l,t} \right) \nonumber \\&-\,\frac{1}{2}\beta \int _0^l {EA\left( s \right) w_s^2 \left( {s,t} \right) \hbox {d}s} \nonumber \\&+\,\beta \rho l{\dot{l}}\left( {{\dot{w}}\left( {l,t} \right) +{\dot{l}}w_s \left( {l,t} \right) } \right) w_s \left( {l,t} \right) \nonumber \\&+\,\frac{1}{2}\beta \int _0^l {sEA_s \left( s \right) w_s^2 \left( {s,t} \right) \hbox {d}s}\nonumber \\&-\,\frac{1}{2}\beta \rho l{\dot{l}}^{2}w_s^2 \left( {l,t} \right) \nonumber \\&+\,\frac{1}{2}\beta \rho \int _0^l {{\dot{l}}^{2}w_s^2 \left( {s,t} \right) \hbox {d}s} +\frac{1}{2}\beta \rho l{\dot{w}}^{2}\left( {l,t} \right) \nonumber \\&-\,\frac{1}{2}\beta \rho \int _0^l {{\dot{w}}^{2}\left( {s,t} \right) \hbox {d}s} \nonumber \\&+\,\beta \int _0^l {s\frac{1}{2}EA_s \left( s \right) u_s^2 \left( {s,t} \right) w_s \left( {s,t} \right) \hbox {d}s}\nonumber \\&+\,\beta \int _0^l {s\frac{1}{2}EA_s \left( s \right) v_s^2 \left( {s,t} \right) w_s \left( {s,t} \right) \hbox {d}s}\nonumber \\ \end{aligned}$$
(A13)

By applying Inequalities (A4) and (A5), substituting Eqs. (53), (A12) and (A13) into the derivative of Eq. (A3) leads to

$$\begin{aligned}&{\dot{V}}\left( t \right) \le -\zeta _1 \int _0^l {u_s^2 \left( {s,t} \right) \hbox {d}s} \nonumber \\&\quad -\zeta _2 \int _0^l {u_s^2 \left( {s,t} \right) v_s^2 \left( {s,t} \right) \hbox {d}s} \nonumber \\&\quad -\,\zeta _3 \int _0^l {u_s^4 \left( {s,t} \right) \hbox {d}s} -\zeta _4 \int _0^l {v_s^2 \left( {s,t} \right) \hbox {d}s} \nonumber \\&\quad -\,\zeta _5 \int _0^l {v_s^4 \left( {s,t} \right) \hbox {d}s} -\zeta _6 \int _0^l {w_s^2 \left( {s,t} \right) \hbox {d}s} \nonumber \\&\quad -\,\frac{1}{4}\beta \rho \int _0^l {\left( {{\dot{u}}\left( {s,t} \right) +{\dot{l}}u_s \left( {s,t} \right) } \right) ^{2}\hbox {d}s} \nonumber \\&\quad -\,\frac{1}{4}\beta \rho \int _0^l {\left( {{\dot{v}}\left( {s,t} \right) +{\dot{l}}v_s \left( {s,t} \right) } \right) ^{2}\hbox {d}s} \nonumber \\&\quad -\,\frac{1}{4}\beta \rho \int _0^l {\left( {{\dot{w}}\left( {s,t} \right) +{\dot{l}}w_s \left( {s,t} \right) } \right) ^{2}\hbox {d}s} -\zeta _7 u_s^2 \left( {l,t} \right) \nonumber \\&\quad -\,\zeta _8 u_s^4 \left( {l,t} \right) -\zeta _9 u_s^2 \left( {l,t} \right) v_s^2 \left( {l,t} \right) +\alpha \bar{{d}}_U \varepsilon _1 k_U \nonumber \\&\quad +\,\alpha \bar{{d}}_V \varepsilon _2 k_V +\alpha \bar{{d}}_W \varepsilon _3 k_W \nonumber \\&\quad -\,\frac{\alpha c_4 }{2}\left( {{\dot{u}}\left( {l,t} \right) +{\dot{l}}{{u}}_s \left( {l,t} \right) +u_s \left( {l,t} \right) } \right) ^{2}\nonumber \\&\quad -\,\zeta _{10} \left( {{\dot{u}}\left( {l,t} \right) +{\dot{l}}u_s \left( {l,t} \right) } \right) ^{2}\nonumber \\&\quad -\,\zeta _{11} v_s^2 \left( {l,t} \right) -\zeta _{12} v_s^4 \left( {l,t} \right) \nonumber \\&\quad -\,\frac{\alpha c_5 }{2}\left( {{\dot{v}}\left( {l,t} \right) +{\dot{l}}v_s \left( {l,t} \right) +v_s \left( {l,t} \right) } \right) ^{2}\nonumber \\&\quad -\,\zeta _{13} \left( {{\dot{v}}\left( {l,t} \right) +{\dot{l}}v_s \left( {l,t} \right) } \right) ^{2}-\zeta _{14} w_s^2 \left( {l,t} \right) \nonumber \\&\quad -\,\frac{\alpha c_6 }{2}\left( {{\dot{w}}\left( {l,t} \right) +{\dot{l}}w_s \left( {l,t} \right) +w_s \left( {l,t} \right) } \right) ^{2}\nonumber \\&\quad -\,\zeta _{15} \left( {{\dot{w}}\left( {l,t} \right) +{\dot{l}}w_s \left( {l,t} \right) } \right) ^{2} \nonumber \\&\quad \hbox {+}\,\alpha \left( {\frac{\partial h_1 \left( {\tau _1 \left( t \right) } \right) }{\partial \tau _1 \left( t \right) }{{{\mathcal {N}}}}\left( {\varsigma _1 \left( t \right) } \right) -1} \right) \frac{{\dot{\varsigma }}_1 \left( t \right) }{k_1 }\nonumber \\&\quad -\alpha c_7 \bar{{u}}_2^2 \left( t \right) +\,\alpha \left( {\frac{\partial h_2 \left( {\tau _2 \left( t \right) } \right) }{\partial \tau _2 \left( t \right) }{{{\mathcal {N}}}}\left( {\varsigma _2 \left( t \right) } \right) -1} \right) \frac{{\dot{\varsigma }}_2 \left( t \right) }{k_2 } \nonumber \\&\quad -\,\alpha c_8 \bar{{v}}_2^2 \left( t \right) +\alpha \left( {\frac{\partial h_3 \left( {\tau _3 \left( t \right) } \right) }{\partial \tau _3 \left( t \right) }{{{\mathcal {N}}}}\left( {\varsigma _3 \left( t \right) } \right) -1} \right) \nonumber \\&\quad \times \frac{{\dot{\varsigma }}_3 \left( t \right) }{k_3 }-\alpha c_9 \bar{{w}}_2^2 \left( t \right) \end{aligned}$$
(A14)

where \(\zeta _i \), \(i=1,2,3\ldots 15\), are

$$\begin{aligned} \zeta _1= & {} \frac{\beta }{2}T_{\min } -\frac{\alpha }{2}T_{s\max } {\dot{l}}_{\max } -\frac{\alpha }{2}{\dot{l}}_{\max } EA_{s\max } \frac{1}{4\delta _1 }\nonumber \\&-\,\frac{1}{2}\alpha {\dot{T}}_{\max } -\frac{\beta }{2}LT_{s\max } -\beta EA_{\max } \frac{1}{4\delta _3 }\nonumber \\&-\,\beta \rho {\dot{l}}_{\max }^2 -\frac{1}{2}\beta LEA_{s\max } \frac{1}{4\delta _5 }, \\ \zeta _2= & {} \beta \frac{3}{4}EA_{\min } -\alpha \frac{1}{4}EA_{s\max } {\dot{l}}_{\max } -L\frac{1}{4}EA_{s\max } \beta , \\ \zeta _3= & {} \beta \frac{3}{8}EA_{\min } -\alpha \frac{1}{8}{\dot{l}}_{\max } EA_{s\max } -\frac{\alpha }{4}{\dot{l}}_{\max } EA_{s\max } \delta _1 \nonumber \\&-\,\frac{1}{8}\beta LEA_{s\max } -\frac{1}{2}\beta EA_{\max } \delta _3 -\frac{1}{4}\beta LEA_{s\max } \delta _5 , \\ \zeta _4= & {} \frac{\beta }{2}T_{\min } -\frac{\alpha }{2}{\dot{l}}_{\max } T_{s\max } -\frac{\alpha }{2}{\dot{l}}_{\max } EA_{s\max } \frac{1}{4\delta _2 }\nonumber \\&-\,\frac{1}{2}\alpha {\dot{T}}_{\max } -\frac{\beta }{2}LT_{s\max } -\beta EA_{\max } \frac{1}{4\delta _4 }-\beta \rho {\dot{l}}_{\max }^2\nonumber \\&-\,\frac{1}{2}\beta LEA_{s\max } \frac{1}{4\delta _6 }, \\ \zeta _5= & {} \beta \frac{3}{8}EA_{\min } -\alpha \frac{1}{8}EA_{s\max } {\dot{l}}_{\max } -\frac{\alpha }{4}{\dot{l}}_{\max } EA_{s\max } \delta _2\nonumber \\&-\,\frac{1}{8}\beta LEA_{s\max } -\frac{1}{2}\beta EA_{\max } \delta _4 -\frac{1}{4}\beta LEA_{s\max } \delta _6 , \\ \zeta _6= & {} \frac{1}{2}\beta EA_{\min } -\frac{1}{2}\alpha {\dot{l}}_{\max } EA_{s\max }\nonumber \\&-\,\frac{1}{2}\beta LEA_{s\max } -\beta \rho {\dot{l}}_{\max }^2 , \\ \zeta _7= & {} \alpha T_{\min } -\frac{3}{2}\alpha EA_{\max } \frac{1}{4\sigma _1 }-\frac{\alpha c_4 }{2}\nonumber \\&-\,\frac{1}{2}\beta LT_{\max } -\beta LEA_{\max } \frac{1}{4\sigma _3 }, \\ \zeta _8= & {} \frac{1}{2}\alpha EA_{\min } -\frac{3}{4}\alpha EA_{\max } \sigma _1 -\beta L\frac{3}{8}EA_{\max } \nonumber \\&-\,\frac{1}{2}\beta LEA_{\max } \sigma _3 , \quad \zeta _9 =\alpha EA_{\min } \nonumber \\&-\,\beta L\frac{3}{4}EA_{\max } , \zeta _{10} =\frac{\alpha c_4 }{2}-\frac{1}{2}\beta \rho L, \quad \zeta _{11} \nonumber \\= & {} \alpha T_{\min } -\frac{3}{2}\alpha EA_{\max } \frac{1}{4\sigma _2 }-\frac{\alpha c_5 }{2}\nonumber \\&-\,\frac{1}{2}\beta LT_{\max } -\beta LEA_{\max } \frac{1}{4\sigma _4 }, \\ \zeta _{12}= & {} \frac{1}{2}\alpha EA_{\min } -\frac{3}{4}\alpha EA_{\max } \sigma _2 -\beta L\frac{3}{8}EA_{\max } \nonumber \\&-\,\frac{1}{2}\beta LEA_{\max } \sigma _4 , \quad \zeta _{13} =\frac{\alpha c_5 }{2}-\frac{1}{2}\beta \rho L \\ \zeta _{14}= & {} \alpha EA_{\min } -\frac{\alpha c_6 }{2}-\frac{1}{2}\beta LEA_{\max } , \quad \zeta _{15} =\frac{\alpha c_6 }{2}\nonumber \\&-\,\frac{1}{2}\beta \rho L \end{aligned}$$

As a result, if the constants \(\delta _1 \), \(\delta _2 \), \(\delta _3 \), \(\delta _4 \), \(\delta _5 \), \(\delta _6 \), \(\sigma _1 \), \(\sigma _2 \), \(\sigma _3 \), \(\sigma _4 \), \(c_4 \), \(c_5 \), \(c_6 \), \(\alpha \), \(\beta \) are selected appropriately to satisfy \(\zeta _i >0\), \(i=1,2,3\ldots 15\), we have

$$\begin{aligned} {\dot{V}}\left( t \right)\le & {} -\lambda V\left( t \right) +\alpha \bar{{d}}_U \varepsilon _1 k_U \nonumber \\&+\,\alpha \bar{{d}}_V \varepsilon _2 k_V +\alpha \bar{{d}}_W \varepsilon _3 k_W \nonumber \\&+\,\alpha \left( {\xi _1 \left( t \right) {{{\mathcal {N}}}}\left( {\varsigma _1 \left( t \right) } \right) -1} \right) \frac{{\dot{\varsigma }}_1 \left( t \right) }{k_1 } \nonumber \\&+\,\alpha \left( {\xi _2 \left( t \right) {{{\mathcal {N}}}}\left( {\varsigma _2 \left( t \right) } \right) -1} \right) \frac{{\dot{\varsigma }}_2 \left( t \right) }{k_2 }\nonumber \\&+\,\alpha \left( {\xi _3 \left( t \right) {{{\mathcal {N}}}}\left( {\varsigma _3 \left( t \right) } \right) -1} \right) \frac{{\dot{\varsigma }}_3 \left( t \right) }{k_3 } \end{aligned}$$
(A15)

where

$$\begin{aligned}&0<\xi _1 \left( t \right) =\frac{\partial h_1 \left( {\tau _1 \left( t \right) } \right) }{\partial \tau _1 \left( t \right) }=\frac{4}{\left( {e^{\frac{\tau _1 \left( t \right) }{\tau _{UM} }}\hbox {+}e^{-\frac{\tau _1 \left( t \right) }{\tau _{UM} }}} \right) ^{2}}\le 1, \\&\quad 0<\xi _2 \left( t \right) =\frac{\partial h_2 \left( {\tau _2 \left( t \right) } \right) }{\partial \tau _2 \left( t \right) }=\frac{4}{\left( {e^{\frac{\tau _2 \left( t \right) }{\tau _{VM} }}\hbox {+}e^{-\frac{\tau _2 \left( t \right) }{\tau _{VM} }}} \right) ^{2}} \\&\quad \le 1, 0<\xi _3 \left( t \right) =\frac{\partial h_3 \left( {\tau _3 \left( t \right) } \right) }{\partial \tau _3 \left( t \right) }=\frac{4}{\left( {e^{\frac{\tau _3 \left( t \right) }{\tau _{WM} }}\hbox {+}e^{-\frac{\tau _3 \left( t \right) }{\tau _{WM} }}} \right) ^{2}} \\&\quad \le 1, \quad \lambda _3 =\min \left\{ \frac{1}{4}\beta \rho ,\zeta _1 ,\zeta _2 ,\zeta _3 ,\zeta _4 ,\zeta _5 ,\zeta _6 , \right. \\&\left. \quad \frac{c_4 }{m},\frac{c_5 }{m},\frac{c_6 }{m},2c_7 ,2c_8 ,2c_9 \right\} , \quad \lambda =\frac{\lambda _3 }{\lambda _2 }. \end{aligned}$$

Multiplying Inequality (A15) by \(e^{\lambda t}\) and by integration, we obtain

$$\begin{aligned} V\left( t \right) \le V\left( 0 \right) e^{-\lambda t}+\bar{{\upsilon }}\left( t \right) \end{aligned}$$
(A16)

where

$$\begin{aligned} \bar{{\upsilon }}\left( t \right)= & {} \alpha e^{-\lambda t}\int _0^t e^{\lambda \tau }\left( \left( {\xi _1 \left( \tau \right) {{{\mathcal {N}}}}\left( {\varsigma _1 \left( \tau \right) } \right) -1} \right) \frac{{\dot{\varsigma }}_1 \left( \tau \right) }{k_1 } \right. \\&\left. +\,\left( {\xi _2 \left( \tau \right) {{{\mathcal {N}}}}\left( {\varsigma _2 \left( \tau \right) } \right) -1} \right) \frac{{\dot{\varsigma }}_2 \left( \tau \right) }{k_2 } \right. \\&\left. +\,\left( {\xi _3 \left( \tau \right) {{{\mathcal {N}}}}\left( {\varsigma _3 \left( \tau \right) } \right) -1} \right) \frac{{\dot{\varsigma }}_3 \left( \tau \right) }{k_3 }+\bar{{d}}_U \varepsilon _1 k_U \right. \\&\left. +\,\bar{{d}}_V \varepsilon _2 k_V +\bar{{d}}_W \varepsilon _3 k_W \right) \hbox {d}\tau \end{aligned}$$

Applying Lemma 2.3, we can come to the conclusion that V(t), \(\varsigma _i ( t )\) and \(\int _0^t {( {\xi _i ( \tau ){{{\mathcal {N}}}}( {\varsigma _i ( \tau )} )-1} ){\dot{\varsigma }}_i ( \tau )\hbox {d}\tau } \) are bounded on \([ {0,t} ), \quad i=1,2,3\), which indicates that \(\bar{{u}}_1 ( t )\), \(\bar{{v}}_1 ( t )\), \(\bar{{w}}_1 ( t )\), \(\bar{{u}}_2 ( t )\), \(\bar{{v}}_2 ( t )\), \(\bar{{w}}_2 ( t )\), \(u_s ( {s,t} )\), \(v_s ( {s,t} )\), \(w_s ( {s,t})\), \(\frac{\hbox {D}u ( {s,t} )}{\hbox {D}t}\), \(\frac{\hbox {D}v ( {s,t} )}{\hbox {D}t}\), \(\frac{\hbox {D}w ( {s,t} )}{\hbox {D}t}\) and \(\bar{{\upsilon }}( t )\) are all bounded on [ 0, t ). The range of \(\bar{{\upsilon }}( t )\) is described as \(| {\bar{{\upsilon }}( t )} |\le \bar{{\upsilon }}_{\max } \), where \(\bar{{\upsilon }}_{\max } \) is a positive constant.

By Lemma 2.2 and Inequality (A10), we can obtain that

$$\begin{aligned}&\frac{1}{L}u^2 \left( {s,t} \right) \le \int _0^l {u_s^2 \left( {s,t} \right) \hbox {d}s} \le \frac{V\left( t \right) }{\lambda _1 } \nonumber \\&\quad \le \frac{V\left( 0 \right) e^{-\lambda t}+\bar{{\upsilon }}_{\max } }{\lambda _1 }, \quad \forall s\in \left[ {0,L} \right] \end{aligned}$$
(A17)
$$\begin{aligned}&\frac{1}{L}v^2 \left( {s,t} \right) \le \int _0^l {v_s^2 \left( {s,t} \right) \hbox {d}s} \le \frac{V\left( t \right) }{\lambda _1 } \nonumber \\&\quad \le \frac{V\left( 0 \right) e^{-\lambda t}+\bar{{\upsilon }}_{\max } }{\lambda _1 }, \quad \forall s\in \left[ {0,L} \right] \end{aligned}$$
(A18)
$$\begin{aligned}&\frac{1}{L}w^2 \left( {s,t} \right) \le \int _0^l {w_s^2 \left( {s,t} \right) \hbox {d}s} \le \frac{V\left( t \right) }{\lambda _1 } \nonumber \\&\quad \le \frac{V\left( 0 \right) e^{-\lambda t}+\bar{{\upsilon }}_{\max } }{\lambda _1 }, \quad \forall s\in \left[ {0,L} \right] \end{aligned}$$
(A19)

which implies

$$\begin{aligned}&\left| {u\left( {s,t} \right) } \right| \le \sqrt{\frac{L}{\lambda _1 }\left( {V\left( 0 \right) e^{-\lambda t}+\bar{{\upsilon }}_{\max }} \right) }, \quad \forall s\in \left[ {0,L} \right] \nonumber \\ \end{aligned}$$
(A20)
$$\begin{aligned}&\left| {v\left( {s,t} \right) } \right| \le \sqrt{\frac{L}{\lambda _1 }\left( {V\left( 0 \right) e^{-\lambda t}+\bar{{\upsilon }}_{\max } } \right) }, \quad \forall s\in \left[ {0,L} \right] \nonumber \\ \end{aligned}$$
(A21)
$$\begin{aligned}&\left| {w\left( {s,t} \right) } \right| \le \sqrt{\frac{L}{\lambda _1 }\left( {V\left( 0 \right) e^{-\lambda t}+\bar{{\upsilon }}_{\max } } \right) } , \quad \forall s\in \left[ {0,L} \right] \nonumber \\ \end{aligned}$$
(A22)

and

$$\begin{aligned}&\mathop {\lim }\limits _{t\rightarrow \infty } \left| {u\left( {s,t} \right) } \right| \le C, \quad \mathop {\lim }\limits _{t\rightarrow \infty } \left| {v\left( {s,t} \right) } \right| \nonumber \\&\quad \le C, \quad \mathop {\lim }\limits _{t\rightarrow \infty } \left| {w\left( {s,t} \right) } \right| \le C \end{aligned}$$
(A23)

where \(C=\sqrt{\frac{L\bar{{\upsilon }}_{\max } }{\lambda _1 }}\).

And from Eq. (2527), we know that the bounds of control inputs can be written as

$$\begin{aligned}&\left| {\tau _U \left( t \right) } \right| \le \tau _{UM} , \quad \left| {\tau _V \left( t \right) } \right| \nonumber \\&\quad \le \tau _{VM} , \quad \left| {\tau _W \left( t \right) } \right| \le \tau _{WM} \end{aligned}$$
(A24)

From the above proof, we can conclude that the vibrations of the flexible string can finally converge to the compact sets with the proposed constrained boundary control inputs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, X., Liu, J. & Liu, Z. Dynamic modeling and vibration control of a three-dimensional flexible string with variable length and spatiotemporally varying parameters subject to input constraints. Nonlinear Dyn 95, 1395–1413 (2019). https://doi.org/10.1007/s11071-018-4635-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4635-x

Keywords

Navigation