Skip to main content
Log in

Interaction properties of solitonics in inhomogeneous optical fibers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a generalized nonlinear Schrödinger equation with variable dispersion and nonlinear coefficients, which can be used to describe the pulse transmission in inhomogeneous optical fibers, is investigated analytically. By virtue of the Hirota method, analytic multiple soliton solutions are obtained. Interactions between solitonics are presented through choosing specific nonlinearity functions, and interaction properties of them are analyzed. Results obtained may potentially be useful in the area of optical communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142 (1973)

    Article  Google Scholar 

  2. Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095 (1980)

    Article  Google Scholar 

  3. Hirota, R.: The Direct Method in Soliton Theory. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  4. Wazwaz, A.M.: A two-mode modified KdV equation with multiple soliton solutions. Appl. Math. Lett. 70, 1–6 (2017)

    Article  MathSciNet  Google Scholar 

  5. Wazwaz, A.M.: Abundant solutions of various physical features for the (2+1)-dimensional modified KdV-Calogero–Bogoyavlenskii–Schiff equation. Nonlinear Dyn. 89, 1727–1732 (2017)

    Article  MathSciNet  Google Scholar 

  6. Liu, W.J., Liu, M.L., Han, H.H., Fang, S.B., Teng, H., Lei, M., Wei, Z.Y.: Nonlinear optical properties of WSe\(_{2}\) and MoSe\(_{2}\) films and their applications in passively Q-switched erbium doped fiber lasers [Invited]. Photonics Res. 6, C15–C21 (2018)

    Article  Google Scholar 

  7. Wazwaz, A.M., El-Tantawy, S.A.: Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota’s method. Nonlinear Dyn. 88, 3017–3021 (2017)

    Article  MathSciNet  Google Scholar 

  8. Wazwaz, A.M.: Multiple soliton solutions and other exact solutions for a two-mode KdV equation. Math. Method. Appl. Sci. 40, 2277–2283 (2017)

    Article  MathSciNet  Google Scholar 

  9. Liu, W.J., Liu, M.L., OuYang, Y.Y., Hou, H.R., Lei, M., Wei, Z.Y.: CVD-grown MoSe\(_{2}\) with high modulation depth for ultrafast mode-locked erbium-doped fiber laser. Nanotechnology 29, 394002 (2018)

    Article  Google Scholar 

  10. Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83(3), 1529–1534 (2016)

    Article  MathSciNet  Google Scholar 

  11. Gavrikov, M.B., Kudryashov, N.A., Petrov, B.A., Savelyev, V.V., Sineleshchikov, D.I.: Sineleshchikov, Solitary and periodic waves in two-fluid magnetohydrodynamics. Commun. Nonlinear Sci. 38, 1–7 (2016)

    Article  MathSciNet  Google Scholar 

  12. Liu, W.J., Yang, C.Y., Liu, M.L., Yu, W.T., Zhang, Y.J., Lei, M.: Effect of high-order dispersion on three-soliton interactions for the variable-coefficients Hirota equation. Phys. Rev. E 96(4), 042201 (2017)

    Article  MathSciNet  Google Scholar 

  13. Wazwaz, A.M.: A study on a two-wave mode Kadomtsev–Petviashvili equation: conditions for multiple soliton solutions to exist. Math. Method. Appl. Sci. 40, 4128–4133 (2017)

    Article  MathSciNet  Google Scholar 

  14. Liu, W.J., Liu, M.L., Yin, J.D., Chen, H., Lu, W., Fang, S.B., Teng, H., Lei, M., Yan, P.G., Wei, Z.Y.: Tungsten diselenide for all-fiber lasers with the chemical vapor deposition method. Nanoscale 10, 7971–7977 (2018)

    Article  Google Scholar 

  15. Li, W.Y., OuYang, Y.Y., Ma, G.L., Liu, M.L., Liu, W.J.: Q-switched all-fiber laser with short pulse duration based on tungsten diselenide. Laser Phys. 28, 055104 (2018)

    Article  Google Scholar 

  16. Liu, W.J., Liu, M.L., Lei, M., Fang, S.B., Wei, Z.Y.: Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser. IEEE J. Sel. Top. Quant. 24(3), 0901005 (2018)

    Google Scholar 

  17. Sun, B.N., Wazwaz, A.M.: Interaction of lumps and dark solitons in the Mel’nikov equation. Nonlinear. Dyn. 92, 2049–2059 (2018)

    Article  Google Scholar 

  18. Liu, W.J., Liu, M.L., OuYang, Y.Y., Hou, H.R., Ma, G.L., Lei, M., Wei, Z.Y.: Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration. Nanotechnology 29(17), 174002 (2018)

    Article  Google Scholar 

  19. Mollenauer, L.F., Stolen, R.H., Gorden, J.P., Tomlinson, W.J.: Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers. Opt. Lett. 8, 289–291 (1983)

    Article  Google Scholar 

  20. Liu, W.J., Tian, B., Zhang, H.Q.: Types of solutions of the variable-coefficient nonlinear Schrödinger equation with symbolic computation. Phys. Rev. E 78, 066613 (2008)

    Article  Google Scholar 

  21. Dai, C.Q., Zhou, G.Q., Chen, R.P., Lai, X.J., Zheng, J.: Vector multipole and vortex solitons in two-dimensional kerr media. Nonlinear Dyn. 88, 2629–2635 (2017)

    Article  MathSciNet  Google Scholar 

  22. Fedorov, E.G., Zhukov, A.V., BouffFanais, R., Timashkov, A.P.: Propagation of three-dimensional bipolar ultrashort electromagnetic pulses in an inhomogeneous array of carbon nanotubes. Phys. Rev. A 97, 043814 (2018)

    Article  Google Scholar 

  23. Osman, M.S., Wazwaz, A.M.: An efficient algorithm to construct multi-soliton rational solutions of the (2+1)-dimensional KdV equation with variable coefficients. Appl. Math. Comput. 321, 282–289 (2018)

    MathSciNet  Google Scholar 

  24. Liu, W.J., Yu, W.T., Yang, C.Y., Liu, M.L., Zhang, Y.J., Lei, M.: Analytic solutions for the generalized complex Ginzburg–Landau equation in fiber lasers. Nonlinear Dyn. 89(4), 2933–2939 (2017)

    Article  MathSciNet  Google Scholar 

  25. Liu, W.J., Pang, L.H., Han, H.N., Tian, W.L., Chen, H., Lei, M., Yan, P.G., Wei, Z.Y.: 70-fs mode-locked erbium-doped fiber laser with topological insulator. Sci. Rep. 6, 19997 (2016)

    Article  Google Scholar 

  26. Cao, Y.L., He, J.S., Mihalache, D.: Families of exact solutions of a new extended (2+1)-dimensional Boussinesq equation. Nonlinear Dyn. 91, 2593–2605 (2018)

    Article  Google Scholar 

  27. Kudryashov, N.A., Rybka, R.B., Sboev, A.G.: Analytical properties of the perturbed FitzHugh–Nagumo model. Appl. Math. Lett. 76, 142–147 (2018)

    Article  MathSciNet  Google Scholar 

  28. Wazwaz, A.M.: A new integrable equation combining the modified KdV equation with the negative-order modified KdV equation: multiple soliton solutions and a variety of solitonic solutions. Wave Random Complex 28, 533–543 (2018)

    Article  MathSciNet  Google Scholar 

  29. Wazwaz, A.M.: Analysis for a new integrable equation combining the modified Calogero–Bogoyavlenskii–Schiff (MCBS) equation with its negative-order form. Nonlinear Dyn. 91, 877–883 (2018)

    Article  Google Scholar 

  30. Baronio, F., Chen, S.H., Mihalache, D.: Two-color walking Peregrine solitary waves. Opt. Lett. 42, 3514–3517 (2017)

    Article  Google Scholar 

  31. Sinelshchikov, D.I., Kudryashov, N.A.: On the Jacobi last multipliers and Lagrangians for a family of Lienard-type equations. Appl. Math. Comput. 307, 257–264 (2017)

    MathSciNet  Google Scholar 

  32. Liu, W.J., Pang, L.H., Han, H.N., Bi, K., Lei, M., Wei, Z.Y.: Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. Nanoscale 9, 5806–5811 (2017)

    Article  Google Scholar 

  33. Liu, W.J., Zhang, Y.J., Pang, L.H., Yan, H., Ma, G.L., Lei, M.: Study on the control technology of optical solitons in optical fibers. Nonlinear Dyn. 86, 1069–1073 (2016)

    Article  Google Scholar 

  34. Liu, W.J., Pang, L.H., Han, H.N., Lei, M.: Optical soliton shaping in dispersion decreasing fibers. Nonlinear Dyn. 84, 2205–2209 (2016)

    Article  MathSciNet  Google Scholar 

  35. Mollenauer, L.F., Smith, K.: Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman gain. Opt. Lett. 13, 675–677 (1988)

    Article  Google Scholar 

  36. Mollenauer, L.F., Neubelt, M.J., Evangelides, S.G., Gordon, J.P., Simpspon, J.R., Cohen, L.G.: Experimental study of soliton transmission over more than 10,000 km in dispersion-shifted fiber. Opt. Lett. 15, 1203–1205 (1990)

    Article  Google Scholar 

  37. Liu, W.J., Pang, L.H., Han, H.N., Liu, M.L., Lei, M., Faang, S.B., Teng, H., Wei, Z.Y.: Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers. Opt. Express 25, 2950–2959 (2017)

    Article  Google Scholar 

  38. Hasegawa, A., Matsumoto, M.: Optical Solitons in Fibers. Springer, Berlin (2003)

    Book  Google Scholar 

  39. Liu, W.J., Yang, C.Y., Liu, M.L., Yu, W.T., Zhang, Y.J., Lei, M., Wei, Z.Y.: Bidirectional all-optical switches based on highly nonlinear optical fibers. EPL 118(3), 34004 (2017)

    Article  Google Scholar 

  40. Mani-Rajan, M.S., Mahalingam, A.: Nonautonomous solitons in modified inhomogeneous Hirota equation: soliton control and soliton interaction. Nonlinear Dyn. 79, 2469–2484 (2015)

    Article  MathSciNet  Google Scholar 

  41. Dai, C.Q., Wang, X.G., Zhou, G.Q.: Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials. Phys. Rev. A 89, 013834 (2014)

    Article  Google Scholar 

  42. Wang, L., Zhang, J.H., Wang, Z.Q., Liu, C., Li, M., Qi, F.H., Guo, R.: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation. Phys. Rev. E 93, 012214 (2016)

    Article  MathSciNet  Google Scholar 

  43. Gedalin, M., Scott, T.C., Band, Y.B.: Optical solitary waves in the higher order nonlinear Schrödinger equation. Phys. Rev. Lett. 78, 448 (1997)

    Article  Google Scholar 

  44. Kruglov, V.I., Peacock, A.C., Harvey, J.D.: Exact solutions of the generalized nonlinear Schrödinger equation with distributed coefficients. Phys. Rev. E 71, 056619 (2005)

    Article  MathSciNet  Google Scholar 

  45. Yang, C.Y., Li, W.Y., Yu, W.T., Liu, M.L., Zhang, Y.J., Ma, G.L., Lei, M., Liu, W.J.: Amplification, reshaping, fission and annihilation of optical solitons in dispersion-decreasing fiber. Nonlinear Dyn. 92(2), 203–213 (2018)

    Article  Google Scholar 

  46. Li, W.Y., Ma, G.L., Yu, W.T., Zhang, Y.J., Liu, W.J.: Soliton structures in the (1+1)-dimensional Ginzburg-Landau equation with a parity-time-symmetric potential in ultrafast optics. Chin. Phys. B 27, 030504 (2018)

    Article  Google Scholar 

  47. Liu, W.J., Zhu, Y.N., Liu, M.L., Wen, B., Fang, S.B., Teng, H., Lei, M., Liu, L.M., Wei, Z.Y.: Optical properties and applications for MoS\( _{2}\)-Sb\(_{2}\)Te\(_{3}\)-MoS\(_{2}\) heterostructure materials. Photonics Res. 6(3), 220–227 (2018)

    Article  Google Scholar 

  48. Liu, M.L., Liu, W.J., Yan, P.G., Fang, S.B., Teng, H., Wei, Z.Y.: High-power MoTe\(_{2}\)-based passively Q-switched erbium-doped fiber laser. Chin. Opt. Lett. 16(2), 020007 (2018)

    Article  Google Scholar 

  49. Yu, W.T., Yang, C.Y., Liu, M.L., Zhang, Y.J., Liu, W.J.: Interactions of solitons, dromion-like structures and butterfly-shaped pulses for variable coefficient nonlinear Schrödinger equation. Optik 159, 21–30 (2018)

    Article  Google Scholar 

  50. Liu, M.L., Liu, W.J., Pang, L.H., Teng, H., Fang, S.B., Wei, Z.Y.: Ultrashort pulse generation in mode-locked erbium-doped fiber lasers with tungsten disulfide saturable absorber. Opt. Commun. 406, 72–75 (2018)

    Article  Google Scholar 

  51. Leblond, H., Kremer, D., Mihalache, D.: Few-cycle spatiotemporal optical solitons in waveguide arrays. Phys. Rev. A 98, 043839 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work of Wenjun Liu was supported by the National Natural Science Foundation of China (Grant Nos. 11674036 and 11875008), by the Beijing Youth Top-notch Talent Support Program (Grant No. 2017000026833ZK08), and by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, Grant Nos. IPOC2016ZT04 and IPOC2017ZZ05). This work of Qin Zhou was supported by the National Natural Science Foundation of China (Grant Nos. 11705130 and 1157149), and this author was also sponsored by the Chutian Scholar Program of Hubei Government in China. The research work of Milivoj Belic was supported by Qatar National Research Fund (QNRF)(Grant No. NPRP 8-028-1-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhang, Y., Triki, H. et al. Interaction properties of solitonics in inhomogeneous optical fibers. Nonlinear Dyn 95, 557–563 (2019). https://doi.org/10.1007/s11071-018-4582-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4582-6

Keywords

Navigation