Skip to main content
Log in

Abundant solutions of various physical features for the (2+1)-dimensional modified KdV-Calogero–Bogoyavlenskii–Schiff equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

By using various techniques, we investigate the (2\(+\)1)-dimensional modified KdV-Calogero–Bogoyavlenskii–Schiff equation. This equation is integrable under the mean of the consistent Riccati expansion method. The truncated Painlevé expansion, the simplified Hirota’s method and other methods are used as powerful vehicles to conduct the analysis. We formally derive, in explicit forms, abundant solutions of distinct physical structures, including multiple soliton solutions, multiple complex soliton solutions, kink solutions and singular solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, S.J., Toda, K., Sasa, K., Fukuyamam, T.: N soliton solutions to the Bogoyavlenskii-Schiff equation and a quest for the soliton solution in (3+1) dimensions. J. Phys. A Math. Gen. 31, 3337–3347 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Toda, K., Song-Ju, Y., Fukuyama, T.: The Bogoyavlenskii-Schiff Hierarchy and integrable equations in (2+1) dimensions. Rep. Math. Phys. 44(1/2), 247–254 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wang, Y.-H., Wang, H.: Nonlocal symmetry, CRE solvability and soliton-cnoidal solutions of the (2+1)-dimensional modified KdV-Calogero-Bogoyavlenkskii-Schiff equation. Nonlinear, Dynamics. (2017, in press)

  4. Bogoyavlenskii, Q.I.: Overturning solitons in new two-dimensional integrable equations. Math. Izv. 34, 2–245 (1990)

    MathSciNet  Google Scholar 

  5. Schiff, J.: Painleve Transcendents: Their Asymptotics and Physical Applications. Plenum, New York (1992)

    Google Scholar 

  6. Biswas, A., Triki, H., Labidi, M.: Bright and dark solitons of the Rosenau-Kawahara equation with power law nonlinearity. Phys. Wave Phenom. 19(1), 24–29 (2011)

    Article  Google Scholar 

  7. Biswas, A.: Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients. Nonlinear Dyn. 58(1–2), 345–348 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Biswas, A.: Solitary waves for power-law regularized long wave equation and R(m, n) equation. Nonlinear Dyn. 59(3), 423–426 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Biswas, A., Khalique, C.M.: Stationary solitons for nonlinear dispersive Schrodinger’s equation. Nonlinear Dyn. 63(4), 623–626 (2011)

    Article  Google Scholar 

  10. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  11. Hirota, R.: Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27(18), 1192–1194 (1971)

    Article  MATH  Google Scholar 

  12. Olver, P.J.: Evolution equation possessing infinite many symmetries. J. Math. Phys. 18(6), 1212–1215 (1997)

    Article  MATH  Google Scholar 

  13. Hereman, W., Nuseir, A.: Symbolic methods to construct exact solutions of nonlinear partial differential equations. Math. Comput. Simul. 43, 13–27 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Baldwin, D., Hereman, W.: Symbolic software for the Painlevé test of nonlinear ordinary and partial differential equations. J. Nonlinear Math. Phys. 13(1), 90–110 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khalique, C.M., Biswas, A.: Optical solitons with parabolic and dual-power law nonlinearity via Lie symmetry analysis. J. Electromagn. Waves Appl. 23, 963–973 (2009)

    Article  Google Scholar 

  16. Khalique, C.M., Biswas, A.: Optical solitons with power law nonlinearity using Lie symmetry analysis. Phys. Lett. A 373, 2047–2049 (2009)

    Article  MATH  Google Scholar 

  17. Xu, G.Q.: The integrability for a generalized seventh-order KdV equation: Painleve property, soliton solutions, Lax pairs and conservation laws. Phys. Scr. 89, 125201 (2014)

  18. Wazwaz, A.M., Xu, G.Q.: Modified Kadomtsev–Petviashvili equation in (3+1) dimensions: multiple front-wave solutions. Commun. Theor. Phys. 63, 727–730 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Leblond, H., Mihalache, D.: Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 523, 61–126 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Leblond, H., Mihalache, D.: Few-optical-cycle solitons: modified Korteweg-de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models. Phys. Rev. A 79, 063835 (2009)

    Article  Google Scholar 

  21. Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theorem. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  22. Wazwaz, A.M.: \(N\)-soliton solutions for the Vakhnenko equation and its generalized forms. Phys. Scr. 82, 065006 (2010)

    Article  MATH  Google Scholar 

  23. Wazwaz, A.M.: A new generalized fifth-order nonlinear integrable equation. Phys. Scr. 83, 035003 (2011)

    Article  MATH  Google Scholar 

  24. Wazwaz, A.M.: Distinct variants of the KdV equation with compact and noncompact structures. Appl. Math. Comput. 150, 365–377 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Wazwaz, A.M.: New solitons and kinks solutions to the Sharma-Tasso-Olver equation. Appl. Math. Comput. 188, 1205–1213 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Wazwaz, A.M.: Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dyn. 83, 591–596 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3 + 1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83, 1529–1534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Khuri, S.A.: Soliton and periodic solutions for higher order wave equations of KdV type (I). Chaos Solitons Fractals 26(1), 25–32 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Khuri, S.A.: Exact solutions for a class of nonlinear evolution equations: a unified ansatze approach. Chaos Solitons Fractals 36(5), 1181–1188 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul-Majid Wazwaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wazwaz, AM. Abundant solutions of various physical features for the (2+1)-dimensional modified KdV-Calogero–Bogoyavlenskii–Schiff equation. Nonlinear Dyn 89, 1727–1732 (2017). https://doi.org/10.1007/s11071-017-3547-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3547-5

Keywords

Navigation