Skip to main content
Log in

Novel quantum description of time-dependent molecular interactions obeying a generalized non-central potential

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Quantum features of time-dependent molecular interactions are investigated by introducing a time-varying Hamiltonian that involves a generalized non-central potential. According to the Lewis–Riesenfeld theory, quantum states (wave functions) of such dynamical systems are represented in terms of the eigenstates of the invariant operator. Hence, we have derived the eigenstates of the invariant operator of the system using elegant mathematical manipulations known as the unitary transformation method and the Nikiforov–Uvarov method. Based on full wave functions that are evaluated by considering such eigenstates, quantum properties of the system are analyzed. The time behavior of probability densities which are the absolute square of the wave functions are illustrated in detail. This research provides a novel method for investigating quantum characteristics of complicated molecular interactions. The merit of this research compared to conventional ones in this field is that time-varying parameters, necessary for the actual description of intricate atomic and molecular behaviors with high accuracy, are explicitly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arulsamy, A.D.: Quantum adiabatic theorem for chemical reactions and systems with time-dependent orthogonalization. Prog. Theor. Phys. 126(4), 577–595 (2011)

    Article  MATH  Google Scholar 

  2. Kosloff, R.: Time-dependent quantum-mechanical methods for molecular dynamics. J. Phys. Chem 92(8), 2087–2100 (1988)

    Article  Google Scholar 

  3. Baer, M.: Time-dependent molecular fields created by the interaction of an external electromagnetic field with a molecular system. Int. J. Quantum Chem. 114(24), 1645–1659 (2014)

    Article  Google Scholar 

  4. Jadhav, S., Konstantopoulos, K.: Fluid shear- and time-dependent modulation of molecular interactions between PMNs and colon carcinomas. Am. J. Physiol. Cell Physiol. 283(4), C1133–C1143 (2002)

    Article  Google Scholar 

  5. McLachlan, A.D., Gregory, R.D., Ball, M.A.: Molecular interactions by the time-dependent Hartree method. Mol. Phys. 7(2), 119–129 (1964)

    Article  Google Scholar 

  6. Cai, J.-P., Harris, B., Falanga, V., Eaglstein, W.H., Mertz, P.M., Chin, Y.-H.: Recruitment of mononuclear cells by endothelial cell binding into wound skin is a selective, time-dependent process with define molecular interactions. J. Invest. Dermatol. 95(4), 415–421 (1990)

    Article  Google Scholar 

  7. Stehlik, D., Brunner, H., Hausser, K.H.: Time-dependent interactions in di-tert-butyl-nitroxide (DBNO) as studied by ESR and proton relaxation. J. Mol. Struct. 1(1), 25–30 (1967)

    Article  Google Scholar 

  8. Runge, K., Micha, D.A., Feng, E.Q.A.: Time-dependent molecular orbital approach to electron transfer in ion-atom collsions. Int. J. Quantum Chem. 38(S24), 781–790 (1990)

    Article  Google Scholar 

  9. Lewis Jr., H.R.: Classical and quantum systems with time-dependent harmonic-oscillator-type hamiltonians. Phys. Rev. Lett. 18(15), 510–512 (1967)

    Article  Google Scholar 

  10. Lewis Jr., H.R., Riesenfeld, W.B.: An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 10(8), 1458–1473 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ermakov, V.P.: Second-order differential equations. Conditions of complete integrability. Univ. Isz. Kiev Series III 9, 1–25 (1880) (translation by A.O. Harin). See: Appl. Anal. Discrete Math. 2(2), 123–148 (2008)

  12. Dodonov, V.V., Man’ko, V.I., Rosa, L.: Quantum singular oscillator as a model of a two-ion trap: an amplification of transition probabilities due to small-time variations of the binding potential. Phys. Rev. A 57(4), 2851–2858 (1998)

    Article  Google Scholar 

  13. Menouar, S., Maamache, M., Saadi, Y., Choi, J.R.: Exact wavefunctions for a time-dependent Coulomb potential. J. Phys. A Math. Theor. 41(21), 215303 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Menouar, S., Maamache, M., Choi, J.R., Sever, R.: On the quantization of one-dimensional nonstationary Coulomb potential system. J. Phys. Soc. Jpn. 81(6), 064003 (2012)

    Article  Google Scholar 

  15. Dodonov, V.V., Malkin, I.A., Manko, V.I.: Even and odd coherent states and excitations of a singular oscillator. Physica 72(3), 597–615 (1974)

    Article  MathSciNet  Google Scholar 

  16. Choi, J.R., Gweon, B.H.: Operator method for a nonconservative harmonic oscillator with and without singular perturbation. Int. J. Mod. Phys. B 16(31), 4733–4742 (2002)

    Article  MATH  Google Scholar 

  17. Ndong, M., Tal-Ezer, H., Kosloff, R., Koch, C.P.: A Chebychev propagator with iterative time ordering for explicitly time-dependent Hamiltonians. J. Chem. Phys. 132(6), 064105 (2010)

    Article  Google Scholar 

  18. Agboola, D., Oladipupo, A.: Complete analytic solutions of the Mie-type potentials in N-dimensions. Acta Phys. Polonica A 120(3), 371–377 (2011)

    Article  Google Scholar 

  19. Falaye, B.J., Oyewumi, K.J., Sadikoglu, F., Hamzavi, M., Ikhdair, S.M.: Analysis of quantum-mechanical states of the ring-shaped Mie-type diatomic molecular model via the Fisher’s information. J. Theor. Comput. Chem. 14(05), 1550036 (2015)

    Article  Google Scholar 

  20. Blado, G.G.: Supersymmetry and the Hartmann potential of theoretical chemistry. Theor. Chim. Acta 94(1), 53–66 (1996)

    Article  Google Scholar 

  21. Chen, C.-Y., Liu, C.-L., Lu, F.-L.: Exact solutions of Schrödinger equation for the Makarov potential. Phys. Lett. A 374(11–12), 1346–1349 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Aygun, M., Bayrak, O., Boztosun, I., Sahin, Y.: The energy eigenvalues of the Kratzer potential in the presence of a magnetic field. Eur. Phys. J. D 66(2), 1 (2012). (Article 35)

    Article  Google Scholar 

  23. Oyewumi, K.J.: Analytical solutions of the Kratzer-Fues potential in an arbitrary number of dimensions. Found. Phys. Lett. 18(1), 75–84 (2005)

    Article  Google Scholar 

  24. Frank, W.M., Land, D.J., Spector, R.M.: Singular potentials. Rev. Mod. Phys. 43(1), 36–96 (1971)

    Article  MathSciNet  Google Scholar 

  25. Sadeghi, J., Pourhassan, B.: Exact solution of the non-central modified Kratzer potential plus a ring-shaped like potential by the factorization method. Electron. J. Theor. Phys. 5(17), 193–202 (2008)

    MATH  Google Scholar 

  26. Nasser, I., Abdelmonem, M.S., Abdel-Hady, A.: Handling the singularities of the perturbed Kratzer and inverted Kratzer potentials. In: Proceedings of the 8th Conference on Nuclear and Particle Physics, pp. 123-130 (2011)

  27. Setare, M.R., Karimi, E.: Algebraic approach to the Kratzer potential. Phys. Scr. 75(1), 90–93 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Berkdemir, C., Berkdemir, A., Han, J.: Bound state solutions of the Schrödinger equation for modified Kratzer’s molecular potential. Chem. Phys. Lett. 417(4–6), 326–329 (2006)

    Article  Google Scholar 

  29. Kratzer, A.: Die ultraroten Rotationsspektren der Halogenwasserstoffe. Z. Phys. 3(5), 289–307 (1920)

    Article  Google Scholar 

  30. Fues, E.: Zur Intensität der Bandenlinien und des Affinitätsspektrums zweiatomiger Moleküle. Ann. Phys. (Paris) 386(19), 281–313 (1926)

    MATH  Google Scholar 

  31. Ikhdair, S.M., Sever, R.: Relativistic treatment in D-dimensions to a spin-zero particle with noncentral equal scalar and vector ring-shaped Kratzer potential. Cent. Eur. J. Phys. 6(1), 141–152 (2008)

    Google Scholar 

  32. Ikhdair, S.M., Sever, R.: Polynomial solution of PT-/non-PT-symmetric and non-Hermitian generalized Woods-Saxon potential via Nikiforov–Uvarov method. Int. J. Theor. Phys. 46(6), 1643–1665 (2007)

    Article  MATH  Google Scholar 

  33. Liboff, R.L.: Introductory Quantum Mechanics, 4th edn. Addison Wesley, San Fransisco (2002)

    MATH  Google Scholar 

  34. Erdély, A.: Higher Transcendental Functions, vol. 2. McGraw-Hill, New York (1953)

    Google Scholar 

  35. Wei, W., Xie, Z., Cooper, L.N., Seidel, G.M., Maris, H.J.: Study of exotic ions in superfluid Helium and the possible fission of the electron wave function. J. Low Temp. Phys. 178(1), 78–117 (2015)

    Article  Google Scholar 

  36. Plebanski, J.: Wave functions of a harmonic oscillator. Phys. Rev. 101(6), 1825–1826 (1956)

    Article  Google Scholar 

  37. Raymer, M.G.: Measuring the quantum mechanical wave function. Contemp. Phys. 38(5), 343–355 (1997)

    Article  Google Scholar 

  38. Merad, M., Bensaid, S.: Wave functions for a Duffin-Kemmer-Petiau particle in a time-dependent potential. J. Math. Phys. 48(7), 073515 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Bengtsson, J., Lindroth, E., Selstø, S.: Wave functions associated with time-dependent, complex-scaled Hamiltonians evaluated on a complex time grid. Phys. Rev. A 85(1), 013419 (2012)

    Article  Google Scholar 

  40. Oh, H.G., Lee, H.R., George, T.F., Um, C.I.: Exact wave functions and coherent states of a damped driven harmonic oscillator. Phys. Rev. A 39(11), 5515–5522 (1989)

    Article  MathSciNet  Google Scholar 

  41. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392(1802), 45–57 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ben-Aryeh, Y.: Berry and Pancharatnam topological phases of atomic and optical systems. J. Opt. B Quantum Semiclassical Opt. 6(4), R1–R18 (2004)

    Article  MathSciNet  Google Scholar 

  43. Unanyan, R.G., Fleischhauer, M.: A geometric phase gate without dynamical phases. Phys. Rev. A 69(5), 050302(R) (2004)

    Article  Google Scholar 

  44. Choi, J.R., Yeon, K.H.: Coherent states of the inverted Caldirola–Kanai oscillator with time-dependent singularities. Ann. Phys. (NY) 323(4), 812–826 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Nikiforov, A.F., Uvarov, V.B.: Special Functions of Mathematical Physics. Birkhäuser, Basel (1998)

    MATH  Google Scholar 

  46. Menouar, S., Choi, J.R.: Quantization of time-dependent singular potential systems in one-dimension by using the Nikiforov–Uvarov method. J. Korean Phys. Soc. 67(7), 1127–1132 (2015)

    Article  Google Scholar 

  47. Menouar, S., Choi, J.R.: Quantization of time-dependent non-central singular potential systems in three dimensions by using the Nikiforov–Uvarov method. J. Korean Phys. Soc. 68(4), 505–512 (2016)

    Article  Google Scholar 

  48. Yaşuk, F., Berkdemir, C., Berkdemir, A.: Exact solutions of the Schrödinger equation with non-central potential by the Nikiforov–Uvarov method. J. Phys. A Math. Gen. 38(29), 6579–6586 (2005)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program of the year 2017 through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No.: NRF-2016R1D1A1A09919503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Ryeol Choi.

Appendices

Appendix A: Methods

To solve the quantum problem of the system, several mathematical methods have been used. They are as follows.

1. Invariant operator method

This method is useful when the Hamiltonian of a system depends on time on account of the possible existence of time-varying parameters or driving forces. According to its definition, the invariant operator can be established from the Liouville-von Neumann equation. By solving the eigenvalue equation of the invariant operator, we can get the eigenfunctions of the system. It is well known that such eigenfunctions are different from wave functions of the system by only some time-dependent phase factors [10]. Hence, it is possible to obtain analytical wave functions which are complete quantum solutions of the system by multiplying appropriate phase factors on the eigenfunctions, that can be obtained with the help of the Schrödinger equation.

2. Nikiforov–Uvarov method

When we solve second-order differential equations such as the Schrö dinger equation, the NU method [32, 45,46,47,48] is useful. Through a coordinate transformation \(\xi =\xi (r)\) [45], we can express a general type of a second-order differential equation for an arbitrary function \(f(\xi )\) as

$$\begin{aligned} \frac{\hbox {d}^2 f(\xi )}{\hbox {d} \xi ^2}+\frac{\tilde{\tau }(\xi )}{\sigma (\xi )} \frac{\hbox {d} f(\xi )}{\hbox {d} \xi }+\frac{\tilde{\sigma }(\xi )}{\sigma ^{2}(\xi )}f(\xi )=0, \end{aligned}$$
(A1)

where \(\sigma (\xi )\), \(\tilde{\sigma }(\xi )\), and \(\tilde{\tau }(\xi )\) are polynomials of \(\xi \). We suppose that \(\sigma (\xi )\) and \(\tilde{\sigma }(\xi )\) are allowed up to a second degree and another polynomial \(\tilde{\tau }(\xi )\) up to a first degree. A class of special orthogonal functions [45] that are described by Eq. (A1) can be simple forms through a mathematical manipulation after denoting \(f_{n}(\xi )=h_{n}(\xi )y_{n}(\xi )\), where \(h_{n}(\xi )\) are appropriately chosen functions. If we represent Eq. (A1) in terms of \(y_{n}(\xi )\), the equation reduces to

$$\begin{aligned} \frac{\hbox {d}^2 y_{n}}{\hbox {d} \xi ^2}+\frac{\tau (\xi )}{\sigma \left( \xi \right) }\frac{\hbox {d} y_{n}}{\hbox {d} \xi }+\frac{\lambda _n}{\sigma \left( \xi \right) } y_{n}=0, \end{aligned}$$
(A2)

where we can represent \(\tau (\xi )\) as \(\tau (\xi )=\tilde{\tau }(\xi )+2\Pi (\xi )\) with the condition that the derivative of \(\tau (\xi )\) is negative, while \(\lambda _n \) are constants of the form [48]

$$\begin{aligned} \lambda _{n}=-\frac{n(n-1)}{2}\frac{\hbox {d}^2 \sigma }{\hbox {d} \xi ^2}-n\frac{\hbox {d} \tau }{\hbox {d} \xi }. \end{aligned}$$
(A3)

Notice that \(\lambda _n \) can be written as a particular solution of the equation for \(y_{n}(\xi )\). In fact, this is an nth-order degree of the polynomial. It is possible to represent hypergeometric functions \(y_{n}(\xi )\) by means of the Rodrigues relation of the form [48]

$$\begin{aligned} y_{n}(\xi )={B_{n}}{\rho ^{-1} (\xi )}\frac{\hbox {d}^{n}\left[ \sigma ^{n}(\xi )\rho (\xi )\right] }{\hbox {d}\xi ^{n}} , \end{aligned}$$
(A4)

where \(B_{n}\) are normalization factors and \(\rho (\xi )\) is a weight function that yields a condition of the form [45]

$$\begin{aligned} \frac{\hbox {d} [\sigma \left( \xi \right) \rho \left( \xi \right) ] }{\hbox {d} \xi } =\tau \left( \xi \right) \rho \left( \xi \right) . \end{aligned}$$
(A5)

Hence, the weight function can be obtained using Eq. (A5) together with the expression of \(\Pi \) which is (see Eq. (12) of Ref. [48])

$$\begin{aligned}&\Pi (\xi )=\frac{1}{2}\bigg [\frac{\hbox {d} \sigma (\xi )}{\hbox {d} \xi }-\tilde{\tau }(\xi )\bigg ]\nonumber \\&\quad \quad \qquad \pm \bigg \{ \bigg [ \frac{1}{2}\bigg (\frac{\hbox {d} \sigma (\xi )}{\hbox {d} \xi }-\tilde{\tau }(\xi )\bigg )\bigg ] ^{2}- \tilde{\sigma }(\xi )+k\sigma (\xi )\bigg \}^{1/2}.\nonumber \\ \end{aligned}$$
(A6)

Let us regard that the mathematical representation given inside the square root in Eq. (A6) can be rewritten as a square of a function provided that its discriminant is zero. It would then be possible to obtain an equation for k. Such a value of k is necessary in the development of the NU method. We can easily verify that k is represented as \(k=\lambda -{\hbox {d}}\Pi (\xi )/{\hbox {d}} \xi \). Finally, we derive the representation of \(h_{n}(\xi )\) from

$$\begin{aligned} \frac{\hbox {d} h_n(\xi )}{\hbox {d} \xi }=\frac{\Pi (\xi )}{\sigma (\xi )}h_n(\xi ). \end{aligned}$$
(A7)

Apparently, this equation can be solved by the separation of variables method. Thus, by multiplying \(y_n(\xi )\) obtained from Eq. (A4) and \(h_n(\xi )\) obtained from Eq. (A7), we have the complete solutions for \(f_n(\xi )\).

Appendix B: Mathematical relations

Some important mathematical relations used in the text are given by

$$\begin{aligned}&U_{\mathrm {II}}(t)rU_{\mathrm {II}}^\dagger (t)=\left( \frac{ \beta _{2}(t)}{\alpha _{2}}\right) ^{\frac{1}{2}}r, \end{aligned}$$
(B1)
$$\begin{aligned}&U_{\mathrm {II}}(t)pU_{\mathrm {II}}^\dagger (t)=\left( \frac{\beta _{2}(t)}{\alpha _{2}}\right) ^{-\frac{1}{2} }\left( p-\frac{\beta _{3}(t)}{\alpha _{2}}r\right) , \end{aligned}$$
(B2)
$$\begin{aligned}&\exp \left[ \left( \ln \frac{\beta _2(t)}{\alpha _2}\right) r \frac{\partial }{\partial r} \right] f(r) = f\left( \frac{\beta _2(t)}{\alpha _2} r\right) . \end{aligned}$$
(B3)

The first two relations can be obtained by straightforward evaluations using Eq. (23) [or using Eqs. (24) and (25)] [13]. For the last relation, you can refer to Ref. [44].

Appendix C: Derivation of Eq. (68)

From Eq. (16), we replace \(| \tilde{\phi }_{nn^{\prime }m}(t)\rangle \) with \(U_{\mathrm {II} }^{-1}| \tilde{\phi }_{nn^{\prime }m}^{0}\rangle \) according to Eq. (66):

$$\begin{aligned} \hbar \frac{\hbox {d}}{\hbox {d}t}\gamma _{n}(t)=\big \langle \tilde{\phi }_{nn^{\prime }m}^{0}\mid U_{\mathrm {II}}\left( i\hbar \frac{ \partial }{\partial t}-\tilde{H}(r,\theta ,\varphi ,t)\right) U_{\mathrm {II} }^{-1}\mid \tilde{\phi }_{nn^{\prime }m}^{0}\big \rangle . \end{aligned}$$
(C1)

Now we easily see that a straightforward evaluation gives

$$\begin{aligned} U_{\mathrm {II}}\left( i\hbar \frac{\partial }{\partial t}-\tilde{H}(r,\theta ,\varphi ,t)\right) U_{\mathrm {II}}^{-1} = -\frac{a(t)\tilde{I}_{0}}{\beta _{2}(t)}. \end{aligned}$$
(C2)

Then, we finally have Eq. (68) in the text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menouar, S., Choi, J.R. & Sever, R. Novel quantum description of time-dependent molecular interactions obeying a generalized non-central potential. Nonlinear Dyn 92, 659–671 (2018). https://doi.org/10.1007/s11071-018-4081-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4081-9

Keywords

Navigation