Skip to main content
Log in

Nonlinear dynamic instability analysis of laminated composite thin plates subjected to periodic in-plane loads

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the dynamic instability of thin laminated composite plates subjected to harmonic in-plane loading is studied based on nonlinear analysis. The equations of motion of the plate are developed using von Karman-type of plate equation including geometric nonlinearity. The nonlinear large deflection plate equations of motion are solved by using Galerkin’s technique that leads to a system of nonlinear Mathieu-Hill equations. Dynamically unstable regions, and both stable- and unstable-solution amplitudes of the steady-state vibrations are obtained by applying the Bolotin’s method. The nonlinear dynamic stability characteristics of both antisymmetric and symmetric cross-ply laminates with different lamination schemes are examined. A detailed parametric study is conducted to examine and compare the effects of the orthotropy, magnitude of both tensile and compressive longitudinal loads, aspect ratios of the plate including length-to-width and length-to-thickness ratios, and in-plane transverse wave number on the parametric resonance particularly the steady-state vibrations amplitude. The present results show good agreement with that available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(A_{ij}\) , \(B_{ij}\), \(D_{ij}\) :

Extensional, coupling, bending stiffness

\(\epsilon _{xx}^{(0)}\), \(\epsilon _{yy}^{(0)}\) , \(\gamma _{xy}^{(0)}\) :

Membrane strains

\(\epsilon _{xx}^{(1)}\), \(\epsilon _{yy}^{(1)}\) , \(\gamma _{xy}^{(1)}\) :

Flexural (bending) strains

\(E_{1}\) , \(E_{2}\), \(G_{12}\) , \(\upsilon _{12}\) , \(\upsilon _{21}\) :

Engineering constants of orthotropic composite ply

h :

Plate thickness

a :

Plate length

b :

Plate width

m :

Longitudinal half-wave number

n :

In-plane transverse half-wave number

\(\lambda _{m}\) :

\(m\pi / a\)

\(\lambda _{n}\) :

\(n\pi b\)

\(F_{xx}\left( t \right) \) :

Pulsating longitudinal load

\(F_{s}\) :

Static component of \(F_{xx}\left( t \right) \)

\(F_{d}\) :

Harmonic component of \(F_{xx}\left( t \right) \)

P :

Excitation frequency

p :

Nondimensionalized P

\(q_{mn}\) :

Generalized coordinate

t :

Time

\(u_{0}\) , \(v_{0}\) , \(w_{0}\) :

Orthogonal components of mid-plane displacement functions

(XYZ):

Plate coordinates

\(\rho \) :

Mass density

\(\rho _{t}\) :

Mass density per unit length

(\(\mathrm{N}_{\mathrm{xx}}\) , \(\mathrm{N}_{\mathrm{yy}}\), \(\mathrm{N}_{\mathrm{xy}})\) :

The total in-plane force resultants

(\({\mathrm{M}}_{{\mathrm{xx}}}\) , \({\mathrm{M}}_{{\mathrm{yy}}}\), \({\mathrm{M}}_{{\mathrm{xy}}})\) :

The total moment resultants

\(N_{\mathrm{cr}}\) :

Static buckling load

A :

Amplitude of steady-state vibrations

\({\Omega }_{mn}\) :

Frequency of the free vibration

\({\upmu }_{mn}\) :

Excitation parameter

References

  1. Darabi, M., Darvizeh, M., Darvizeh, A.: Non-linear analysis of dynamic stability for functionally graded cylindrical shells under periodic axial loading. Compos. Struct. 83, 201–211 (2008)

    Article  Google Scholar 

  2. Argento, A., Scott, R.A.: Dynamic instability of layered anisotropic circular cylindrical shells, part I: theoretical development. Sound Vib. 162(2), 311–322 (1993)

    Article  MATH  Google Scholar 

  3. Bolotin, V.V.: The Dynamic Stability of Elastic Systems. Holden-Day, San Francisco (1964)

    MATH  Google Scholar 

  4. Evan-Iwanowsky, R.M.: On the parametric response of structures (Parametric response of structures with periodic loads). Appl. Mech. Rev. 18, 699–702 (1965)

    Google Scholar 

  5. Sahu, S.K., Datta, P.K.: Research advances in the dynamic stability behavior of plates and shells: 1987–2005—part I: conservative systems. Appl. Mech. Rev. 60(2), 65–75 (2007)

  6. Srinivasan, R.S., Chellapandi, P.: Dynamic stability of rectangular laminated composite plates. Comput. Struct. 24(2), 233–238 (1986)

    Article  MATH  Google Scholar 

  7. Bert, C.W., Birman, V.: Dynamic instability of shear deformable antisymmetric angle-ply plates. Solids Struct. 23(7), 1053–1061 (1987)

    Article  MATH  Google Scholar 

  8. Birman, V.: Dynamic stability of unsymmetrically laminated rectangular plates. Mech. Res. Commun. 12(2), 81–86 (1985)

    Article  MATH  Google Scholar 

  9. Moorthy, J., Reddy, J.N., Plaut, R.H.: Parametric instability of laminated composite plates with transverse shear deformation. Solids Struct. 26(7), 801–811 (1990)

    Article  MATH  Google Scholar 

  10. Patel, B.P., Ganapathi, M., Prasad, K.R., Balamurugan, V.: Dynamic instability of layered anisotropic composite plates on elastic foundation. Eng. Struct. 21, 988–995 (1999)

    Article  Google Scholar 

  11. Ramachandra, L.S., Panda, S.K.: Dynamic instability of composite plates subjected to non-uniform in-plane loads. Sound Vib. 331, 53–65 (2012)

    Article  Google Scholar 

  12. Popov, A.A.: Parametric resonance in cylindrical shells: a case study in the nonlinear vibration of structural shells. Eng. Struct. 25, 789–799 (2003)

    Article  Google Scholar 

  13. Alijani, F., Amabili, M.: Non-linear vibrations of shells: aliterature review from 2003 to 2013. Non-linear Mech. 58, 233–257 (2014)

    Article  Google Scholar 

  14. Librescu, L., Thangjitham, S.: Parametric instability of laminated composite shear-deformable flat panels sunbjected to in-plane edge loads. Non-linear Mech. 25(2–3), 263–273 (1990)

    Article  MATH  Google Scholar 

  15. Ganapathi, M., Patel, B.P., Boisse, P., Touratier, M.: Non-linear dynamic stability characteristics of elastic plates subjected to periodic in-plane load. Non-linear Mech. 35, 467–480 (2000)

    Article  MATH  Google Scholar 

  16. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  17. Fung, Y.C.: Foundation of Solid Mechanics. Prentice-Hall, Englewood Cliffs (1965)

    Google Scholar 

  18. Cheng-ti, Z., Lie-dong, W.: Nonlinear theory of dynamic stability for laminated composite cylindrical shells. Appl. Math. Mech. 22(1), 53–62 (2001)

    Article  Google Scholar 

  19. Ostiguy, G.L., Evan-Iwanowski, R.M.: Influence of the aspect ratio on dynamic stability and nonlinear response of rectangular plates. Mech. Des. 104, 417–425 (1982)

    Google Scholar 

  20. Timoshenko, S.P., Gere, J.M.: Theory of Elasticity. Mc Graw-Hill, New York (1961)

    Google Scholar 

  21. Ng, T.Y., Lam, K.Y., Reddy, J.N.: Dynamic stability of cross-ply laminated composite cylindrical shells. Int. J. Mech. Sci. 40(8), 805–823 (1998)

    Article  MATH  Google Scholar 

  22. Najafov, A.M., Sofiyev, A.H., Hui, D., Kadiglu, F., Dorofeyskaya, N.V., Huang, H.: Non-linear dynamic analysis of symmetric and antisymmetric cross-ply laminated orthotropic thin shells. Mechanica 49, 413–427 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the Faculty of Engineering and Computer Science at Concordia University, and Natural Sciences and Engineering Research Council of Canada (NSERC) for their financial support for the research work conducted. The NSERC support was provided through the Discovery Grant # 172848-2012 to the second author of the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ganesan.

Appendix A

Appendix A

$$\begin{aligned} M_{mn}= & {} -16 {\uppi } a^{4} \,A22\,{\uprho }_{t}A11(A22\,A66\,a^{4}\,n^{4}+n^{2}(A11 A22\\&-\,A12(A12+2A66)) m^{2}b^{2}a^{2}+A11 \,A66 \,b^4 m^{4})mb^{4}\\ Q_{mn}= & {} 16 \,A11 \,A33 \,a^{2} m^{3} (A22 \,A66 \,a^{4}n^{4}+ n^{2}(A11\,A22\\&-\,A12 (A12+2 A66))m^{2}\,b^{2}\,a^{2} +A11 \,A66 \,b^{4}m^{4}){\uppi }^{3}b^{4} \\ {\upeta }_{mn}= & {} (A11 b^{4} \,m^{4}+ A22\, a^{4}n^{4}) {\uppi }^{5}m (A11 \,A22\\&-\,A12^2)(A22 \,A66 \,a^{4}\,n^{4}+n^2(A11 \,A22-A12 (A12\\&+\,2 A66)) m^2 b^2a^2+A11 \,A66 b^{4} m^{4}) \\ K_{mn}= & {} 16m \,A22 \,A11{\uppi }^{5}(b^{8}\,A66 (-A11 \,D11 +B11^{2})m^{8}\\&+\,(D11\, A12^{2}+ (2 D11 \,A66-2B11 (B12\\&+\,2B66))A12+(-D11 \,A22 + (-2 D12-4 D66)A66\\&+\,(B12+2B66)^2)A11+B11^{1}\, A22) a^{2}\,n^{2}\,b^{6}\,m^{6}\\&+\,2\,a^{4} n^{4}\,b^{4}((D12+2D66)A12^{2}\\&+\,((2D12+4D66)A66-B22 \,B11-B12^{2}\\&-\,4B66\,B12-4B66^2)A12+ \left( (-2D66-D12)A22 \right. \\&\left. -\,\frac{1}{2}D22\,A66+B22(B12+2 B66)\right) A11 \\&+\left( \frac{1}{2}D11 A66+ B11 (B12+2B66)\right) A22\\&-\,B11\,B22\,A66) m^4+(D22 \,A12^{2} \\&+\,(2 D22 \,A66 -2 B22(B12+2B66))A12\\&+\,(-A22\,D22+B22^2)A11+A22((-2D12\\&-\,4D66)A66+(B12+2B66)^2))a^{6}\,n^{6}b^{2}m^{2}\\&+\,a^{8}n^{8}A66(-A22 \,D22 +B22^{2})) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darabi, M., Ganesan, R. Nonlinear dynamic instability analysis of laminated composite thin plates subjected to periodic in-plane loads. Nonlinear Dyn 91, 187–215 (2018). https://doi.org/10.1007/s11071-017-3863-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3863-9

Keywords

Navigation