Skip to main content
Log in

Nonlinear dynamic stability analysis of Euler–Bernoulli beam–columns with damping effects under thermal environment

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, a unified nonlinear dynamic buckling analysis for Euler–Bernoulli beam–columns subjected to constant loading rates is proposed with the incorporation of mercurial damping effects under thermal environment. Two generalized methods are developed which are competent to incorporate various beam geometries, material properties, boundary conditions, compression rates, and especially, the damping and thermal effects. The Galerkin–Force method is developed by implementing Galerkin method into force equilibrium equations. Then for solving differential equations, different buckled shape functions were introduced into force equilibrium equations in nonlinear dynamic buckling analysis. On the other hand, regarding the developed energy method, the governing partial differential equation for dynamic buckling of beams is also derived by meticulously implementing Hamilton’s principles into Lagrange’s equations. Consequently, the dynamic buckling analysis with damping effects under thermal environment can be adequately formulated as ordinary differential equations. The validity and accuracy of the results obtained by the two proposed methods are rigorously verified by the finite element method. Furthermore, comprehensive investigations on the structural dynamic buckling behavior in the presence of damping effects under thermal environment are conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Karagiozova, D., Alves, M.: Dynamic elastic–plastic buckling of structural elements: a review. Appl. Mech. Rev. 61(4), 040803 (2008)

    Article  Google Scholar 

  2. Budiansky, B.: Theory of buckling and post-buckling behavior of elastic structures. Adv. Appl. Math. 14, 1–65 (1974)

    Google Scholar 

  3. Ansari, R., Pourashrafa, T., Gholamib, R., Shahabodini, A.: Analytical solution for nonlinear post-buckling of functionally graded carbon nanotube-reinforced composite shells with piezoelectric layers. Compos. Part B Eng. 90, 267–277 (2016)

    Article  Google Scholar 

  4. Sevin, E.: On the elastic bending of columns due to dynamic axial forces including effects of axial inertia. J. Appl. Meth. 27(1), 125–131 (1960)

    MATH  MathSciNet  Google Scholar 

  5. Pi, Y.L., Bradford, M.A.: Nonlinear dynamic buckling of pinned-fixed shallow arches under a sudden central concentrated load. Nonlinear Dyn. 73(3), 1289–1306 (2013)

    Article  MathSciNet  Google Scholar 

  6. Budiansky, B.: Buckling of clamped spherical shells. Technical report, Harvard University, Cambridge (1959)

  7. Ramezannezhad Azarboni, H., Darvizeh, M., Darvizeh, A., Ansari, R.: Nonlinear dynamic buckling of imperfect rectangular plates with different boundary conditions subjected to various pulse functions using the Galerkin method. Thin Walled Struct. 94, 577–584 (2015)

    Article  Google Scholar 

  8. Elishakoff, I.: Probabilistic Theory of Structures, 2nd edn. Dover, New York (1999)

    MATH  Google Scholar 

  9. Rouhi, H., Ansari, R.: Nonlocal analytical Flugge shell model for axial buckling of double-walled carbon nanotubes with different end conditions. Nano 7(3), 1250018 (2012)

    Article  Google Scholar 

  10. Rahman, T., Jansen, E.L., Gürdal, Z.: Dynamic buckling analysis of composite cylindrical shells using a finite element based perturbation method. Nonlinear Dyn. 66(3), 389–401 (2011)

    Article  MathSciNet  Google Scholar 

  11. Lindberg, H.E., Florence, A.L.: Dynamic Pulse Buckling: Theory and Experiment. Springer, Berlin (2012)

    MATH  Google Scholar 

  12. Gladden, J., Handzy, N., Belmonte, A., Villermaux, E.: Dynamic buckling and fragmentation in brittle rods. Phys. Rev. Lett. 94(3), 035503 (2005)

    Article  Google Scholar 

  13. Hutchinson, J.W., Budiansky, B.: Dynamic buckling estimates. AIAA J. 4(3), 525–530 (1966)

    Article  Google Scholar 

  14. Fu, Y., Gao, Z., Zhu, F.: Analysis of nonlinear dynamic response and dynamic buckling for laminated shallow spherical thick shells with damage. Nonlinear Dyn. 54(4), 333–343 (2008)

    Article  MATH  Google Scholar 

  15. Hoff, N.J., Bruce, V.G.: Dynamic analysis of the buckling of laterally loaded flat arches. J. Math. Phys. Camb. 32(4), 276–288 (1954)

    MATH  MathSciNet  Google Scholar 

  16. Bisagni, C.: Dynamic buckling of fiber composite shells under impulsive axial compression. Thin Walled Struct. 43(3), 499–514 (2005)

    Article  Google Scholar 

  17. Simitses, G.J.: Dynamic Stability of Suddenly Loaded Structures. Springer, Berlin (2012)

    MATH  Google Scholar 

  18. Budiansky, B., Roth, R.S.: NASA collected papers on stability of shell structures. TN-1510, pp 597–606 (1962)

  19. Huyan, X., Simitses, G.J.: Dynamic buckling of imperfect cylindrical shells under axial compression and bending moment. AIAA J. 35(8), 1404–1412 (1997)

    Article  MATH  Google Scholar 

  20. Petry, D., Fahlbusch, G.: Dynamic buckling of thin isotropic plates subjected to in-plane impact. Thin Walled Struct. 38(3), 267–283 (2000)

    Article  Google Scholar 

  21. Gary, G.: Dynamic buckling of an elastoplastic column. Int. J. Impact Eng. 1(4), 357–375 (1983)

    Article  Google Scholar 

  22. Hoff, N.J.: The dynamics of the buckling of elastic columns. J. Appl. Mech. 18, 68–74 (1951)

    MATH  MathSciNet  Google Scholar 

  23. Schmitt, A.: A method of stepwise integration in problems of impact buckling. J. Appl. Mech. 23(2), 291–294 (1956)

    MATH  Google Scholar 

  24. Erickson, B., Nardo, S.V., Patel, S.A., Hoff, N.J.: An experimental investigation of the maximum loads supported by elastic columns in rapid compression tests. Proc. Soc. Exp. Stress Anal. 14, 13–20 (1956)

    Google Scholar 

  25. Elishakoff, I.: Hoff’s problem in a probabilistic setting. J. Appl. Meth. 47(2), 403–408 (1980)

    MATH  Google Scholar 

  26. Motamarri, P., Suryanarayan, S.: Unified analytical solution for dynamic elastic buckling of beams for various boundary conditions and loading rates. Int. J. Mech. Sci. 56(1), 60–69 (2012)

    Article  Google Scholar 

  27. Kuzkin, V.A., Dannert, M.M.: Buckling of a column under a constant speed compression: a dynamic correction to the Euler formula. Acta Mech. 227(6), 1645–1652 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pian, T., Siddall, J.N.: Dynamic Buckling of Slender Struts. MIT Press, Cambridge (1950)

    Google Scholar 

  29. Davidson, J.F.: Buckling of struts under dynamic loading. J. Mech. Phys. Solids 2(1), 54–66 (1953)

    Article  Google Scholar 

  30. Hayashi, T., Sano, Y.: Dynamic buckling of elastic bars: 1st report, the case of low velocity impact. Bull. JSME 15(88), 1167–1175 (1972)

    Article  Google Scholar 

  31. Hayashi, T., Sano, Y.: Dynamic buckling of elastic bars: 2nd report, the case of high velocity impact. Bull. JSME 15(88), 1176–1184 (1972)

    Article  Google Scholar 

  32. Ari-Gur, J., Weller, T., Singer, J.: Experimental studies of columns under axial impact. TAE rep. no. 346, Department of Aeronautical Engineering, Technion-Israel Institute of Technology, Haifa (1978)

  33. Taub, J.: Impact Buckling of Thin Bars in the Elastic Range for Any End Condition. National Advisory Committee for Aeronautics, Technical Memorandums, Washington (1934)

    Google Scholar 

  34. Koning, C., Taub, J.: Impact Buckling of Thin Bars in the Elastic Range Hinged at Both Ends. National Advisory Committee for Aeronautics, Technical Memorandums, Washington (1934)

    Google Scholar 

  35. Huffington, N.J.: Response of elastic columns to axial pulse loading. AIAA J. 1(9), 2099–2104 (1963)

    Article  Google Scholar 

  36. Weller, T., Abramovich, H., Yaffe, R.: Dynamic buckling of beams and plates subjected to axial impact. Comput. Struct. 32(3–4), 835–851 (1989)

    Article  Google Scholar 

  37. Hughes, T.J.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Courier Corporation, North Chelmsford (2012)

    Google Scholar 

  38. Meier, J.: On the dynamics of elastic buckling. J. Aerosol Sci. 12(4), 433–440 (1945)

    Google Scholar 

  39. Jabareen, M., Sheinman, I.: Dynamic buckling of a beam on a nonlinear elastic foundation under step loading. J. Mech. Mater. Struct. 4(7–8), 1365–1373 (2009)

    Article  Google Scholar 

  40. Lepik, U.: On dynamic buckling of elastic–plastic beams. Int. J. Nonlinear Mech. 35(4), 721–734 (2000)

    Article  MATH  Google Scholar 

  41. Clough, R.W., Penzien, J.: Dynamics of Structures, 2nd edn. McGraw Hill Inc., New York (1993)

    MATH  Google Scholar 

  42. Luongo, A.: Mode localization in dynamics and buckling of linear imperfect continuous structures. Nonlinear Dyn. 25(1), 133–156 (2001)

  43. Kounadis, A.N., Raftoyiannis, J.: Dynamic stability-criteria of nonlinear elastic damped undamped systems under step loading. AIAA J. 28(7), 1217–1223 (1990)

    Article  Google Scholar 

  44. Kounadis, A.N.: Nonlinear dynamic buckling of discrete dissipative or nondissipative systems under step loading. AIAA J. 29(2), 280–289 (1991)

    Article  Google Scholar 

  45. Mallon, N.J., Fey, R.H.B., Nijmeijer, H., Zhang, G.Q.: Dynamic buckling of a shallow arch under shock loading considering the effects of the arch shape. Int. J. Nonlinear Mech. 41(9), 1057–1067 (2006)

  46. Lee, H.P.: Effects of damping on the dynamic stability of a rod with an intermediate spring support subjected to follower forces. Comput. Struct. 60(1), 31–39 (1996)

    Article  MATH  Google Scholar 

  47. Ansari, R., et al.: Thermal post-buckling analysis of nanoscale films based on a non-classical finite element approach. J. Therm. Stress. 38(6), 651–664 (2015)

    Article  MathSciNet  Google Scholar 

  48. Ansari, R., Sahmani, S., Rouhi, H.: Axial buckling analysis of single-walled carbon nanotubes in thermal environments via the Rayleigh–Ritz technique. Comput. Mater. Sci. 50(10), 3050–3055 (2011)

    Article  Google Scholar 

  49. Shariyat, M.: Dynamic thermal buckling of suddenly heated temperature-dependent FGM cylindrical shells, under combined axial compression and external pressure. Int. J. Solids Struct. 45(9), 2598–2612 (2008)

    Article  MATH  Google Scholar 

  50. Wu, G.: The analysis of dynamic instability and vibration motions of a pinned beam with transverse magnetic fields and thermal loads. J. Sound. Vib. 284(1), 343–360 (2005)

    Article  Google Scholar 

  51. Stanton, S.C., Mann, B.P.: On the dynamic response of beams with multiple geometric or material discontinuities. Mech. Syst. Signal Process. 24(5), 1409–1419 (2010)

    Article  Google Scholar 

  52. Shaker, F.J.: Effect of axial load on mode shapes and frequencies of beams. NASA technical note (NASA-TN-8109) (1975)

  53. Yang, B.: Stress, Strain, and Structural Dynamics: An Interactive Handbook of Formulas, Solutions, and MATLAB Toolboxes. Elsevier, Boston (2005)

    Google Scholar 

  54. Thomsen, J.J.: Vibrations and Stability: Advanced Theory, Analysis, and Tools. Springer, Berlin (2013)

    Google Scholar 

  55. Cai, C., Zheng, H., Khan, M., Hung, K.: Modeling of material damping properties in ANSYS. In: CADFEM Users’ Meeting and ANSYS Conference, pp. 9–11 (2002)

  56. Deniz, A., Sofiyev, A.: The nonlinear dynamic buckling response of functionally graded truncated conical shells. J. Sound Vib. 332(4), 978–992 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The work presented in this paper was supported by Australian Research Council Projects DP160103919 and DP140101887.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, K., Gao, W., Wu, D. et al. Nonlinear dynamic stability analysis of Euler–Bernoulli beam–columns with damping effects under thermal environment. Nonlinear Dyn 90, 2423–2444 (2017). https://doi.org/10.1007/s11071-017-3811-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3811-8

Keywords

Navigation