Skip to main content
Log in

Aeroelastic effect on modal interaction and dynamic behavior of acoustically excited metallic panels

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper details the study of the aeroelastic effect on modal interaction and dynamic behavior of acoustically excited square metallic panels with fully clamped edges using finite element method. The first-order shear deformation plate theory and von Karman nonlinear strain–displacement relationships are employed to consider the structural geometric nonlinearity caused by large vibration deflections. Piston aerodynamic theory and Gaussian white noise are used to simulate the aerodynamic load and the acoustic load, respectively. Motion equations are derived by the principle of virtual work in the physical coordinates and then transformed into the truncated modal coordinates with reduced orders. Runge–Kutta method is employed to obtain the system response, and the modal interaction mechanism is quantitatively valued by the modal participation distribution. Results show that in the pre-/near-flutter regions, in addition to the dominant fundamental resonant mode, the first twin companion antisymmetric modes can be largely excited by the aeroelastic coupling mechanism; thus, aeroelastic modal participation distribution and the spectrum response can be altered, while the dynamic behavior still exhibits linear random vibrations. In the post-flutter region, the dominant flutter motion can be enriched by highly ordered odd order super-harmonic motion occurs due to 1:1 internal resonances. Correspondingly, the panel dynamic behavior changes from random vibration to highly ordered motions in the fashion of diffused limit-cycle oscillations (LCOs). However, this LCOs motion can be affected by the intensifying acoustic excitation through changing the aeroelastic modal interaction mechanism. Accompanied with these changes, the panel can experience various stochastic bifurcations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Eason, T.G., Spottswood, S.M.: A structures perspective on the challenges associated with analyzing a reusable hypersonic platform. In: 54th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference. American Institute of Aeronautics and Astronautics (2013)

  2. Pozefsky, P., Blevins, R.D, Laganelli, A.: Thermo-vibro-acoustic loads and fatigue of hypersonic flight vehicle structure. AFRL TR 3014 (1989)

  3. Miller, B.A., McNamara, J.J., Spottswood, S.M.: The impact of flow induced loads on snap-through behavior of acoustically excited, thermally buckled panels. J. Sound Vib. 330(23), 5736–5752 (2011). doi:10.1016/j.jsv.2011.06.028

    Article  Google Scholar 

  4. Fung, Y.C.: Some recent contributions to panel flutter research. AIAA J. 1(4), 898–909 (1963). doi:10.2514/3.1661

    Article  Google Scholar 

  5. Muhlstein, L., Gaspers, P.A., Riddle, D.W.: An experimental study of the influence of the turbulent boundary layer on panel flutter. National Aeronautics and Space Administration (1968)

  6. Dowell, E.H.: Generalized aerodynamic forces on a flexible plate undergoing transient motion in a shear flow with an application to panel flutter. AIAA J. 9(5), 834–841 (1971). doi:10.2514/3.6283

    Article  Google Scholar 

  7. Vedeneev, V.: Interaction of panel flutter with inviscid boundary layer instability in supersonic flow. J. Fluid Mech. 736, 216–249 (2013). doi:10.1017/jfm.2013.522

    Article  MATH  Google Scholar 

  8. Hashimoto, A., Aoyama, T., Nakamura, Y.: Effects of turbulent boundary layer on panel flutter. AIAA J. 47(12), 2785–2791 (2009). doi:10.2514/1.35786

    Article  Google Scholar 

  9. Alder, M.: Development and validation of a partitioned fluid-Structure solver for transonic panel flutter with focus on boundary layer effects. In: 44th AIAA fluid dynamics conference. American Institute of Aeronautics and Astronautics (2014)

  10. Ostoich, C.M., Bodony, D.J., Geubelle, P.H.: Interaction of a Mach 2.25 turbulent boundary layer with a fluttering panel using direct numerical simulation. Phys. Fluids (2013). doi:10.1063/1.4819350

    Google Scholar 

  11. Vaicaitis, R., Dowell, E.H., Ventres, C.S.: Nonlinear panel response by a Monte Carlo approach. AIAA J. 12(5), 685–691 (1974). doi:10.2514/3.49320

    Article  Google Scholar 

  12. Abdel-Motagaly, K., Duan, B., Mei, C.: Nonlinear response of composite panels under combined acoustic excitation and aerodynamic pressure. AIAA J. 38(9), 1534–1542 (2000). doi:10.2514/2.1175

    Article  Google Scholar 

  13. Ibrahim, H.H., Tawfik, M., Negm, H.M.: Aerothermoacoustic response of shape memory alloy hybrid composite panels. J. Aircraft 46(5), 1544–1555 (2009). doi:10.2514/1.39214

    Article  Google Scholar 

  14. Sinay, L.R., Reiss, E.L.: Perturbed panel flutter-A simple model. AIAA J. 19(11), 1476–1483 (1981). doi:10.2514/3.7876

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, X., Yang, Z., Zhou, J.: Aeroelastic effect on aerothermoacoustic response of metallic panels in supersonic flow. Chin. J. Aeronaut. 29(6), 1635–1648 (2016). doi:10.1016/j.cja.2016.10.003

    Article  Google Scholar 

  16. Zhao, H., Cao, D.: Supersonic flutter of laminated composite panel in coupled multi-fields. Aerosp. Sci. Technol. 47, 75–85 (2015). doi:10.1016/j.ast.2015.09.019

    Article  Google Scholar 

  17. Dowell, E., Edwards, J., Strganac, T.: Nonlinear aeroelasticity. J. Aircraft 40(5), 857–874 (2003). doi:10.2514/2.6876

  18. Nayfeh, A.H., Chin, C., Mook, D.T.: Parametrically excited nonlinear two-degree-of-freedom systems with repeated natural frequencies. Shock Vib. 2(1), 43–57 (1995). doi:10.3233/SAV-1995-2105

    Article  Google Scholar 

  19. O’Neil, T., Gilliatt, H., Strganac, T.: Investigations of aeroelastic response for a system with continuous structural nonlinearities. In: 37th structure, structural dynamics and materials conference. American Institute of Aeronautics and Astronautics (1996)

  20. Gilliatt, H., Strganac, T., Kurdila, A.: Nonlinear aeroelastic response of an airfoil. In: 35th aerospace sciences meeting and exhibit (1997)

  21. Kulikov, A.N.: 1:3 Resonance is a possible cause of nonlinear panel flutter. Comput. Math. Math. Phys. 51(7), 1181–1193 (2011). doi:10.1134/S0965542511070128

    Article  MathSciNet  MATH  Google Scholar 

  22. Kulikov, A.N., Pilipenko, G.V.: Resonances in the problem of the panel flutter in a supersonic gas flow. Modelirovanie i Analiz Informatsionnykh Sistem [Model. Anal. Inf. Syst.] 18(1), 56–67 (2011)

    Google Scholar 

  23. Zhu, W.Q., Lu, M.Q., Wu, Q.T.: Stochastic jump and bifurcation of a Duffing oscillator under narrow-band excitation. J. Sound Vib. 165(2), 285–304 (1993). doi:10.1006/jsvi.1993.1258

    Article  MATH  Google Scholar 

  24. Mantari, J.L., Oktem, A.S., Soares, C.G.: A new higher order shear deformation theory for sandwich and composite laminated plates. Compos. Part B Eng. 43(3), 1489–1499 (2012). doi:10.1016/j.compositesb.2011.07.017

    Article  MATH  Google Scholar 

  25. Tessler, A., Hughes, T.J.R.: A three-node Mindlin plate element with improved transverse shear. Comput. Method Appl Mech. Eng. 50(1), 71–101 (1985). doi:10.1016/0045-7825(85)90114-8

    Article  MATH  Google Scholar 

  26. Dowell, E.H.: Panel flutter-A review of the aeroelastic stability of plates and shells. AIAA J. 8(3), 385–399 (1970). doi:10.2514/3.5680

    Article  Google Scholar 

  27. Tian, W., Yang, Z., Gu, Y.: Analysis of nonlinear aeroelastic characteristics of a trapezoidal wing in hypersonic flow. Nonlinear Dyn. (2017). doi:10.1007/s11071-017-3511-4

    Google Scholar 

  28. Zhou, R.C., Xue, D.Y., Mei, C.: Finite element time domain-modal formulation for nonlinear flutter of composite panels. AIAA J. 32(10), 2044–2052 (1994). doi:10.2514/3.12250

    Article  MATH  Google Scholar 

  29. Ibrahim, R.A., Orono, P.O., Madaboosi, S.R.: Stochastic flutter of a panel subjected to random in-plane forces. I-Two mode interaction. AIAA J. 28(4), 694–702 (1990). doi:10.2514/3.10448

    Article  MATH  Google Scholar 

  30. Guo, X., Mei, C.: Application of aeroelastic modes on nonlinear supersonic panel flutter at elevated temperatures. Comput. Struct. 84, 1619–1628 (2006). doi:10.1016/j.compstruc.2006.01.041

    Article  Google Scholar 

  31. Sohn, K.J., Kim, J.H.: Nonlinear thermal flutter of functionally graded panels under a supersonic flow. Compos. Struct. 88(3), 380–387 (2009). doi:10.1016/j.compstruct.2008.04.016

    Article  Google Scholar 

Download references

Acknowledgements

The presented work is supported by the National Natural Science Foundation of China (NSFC, Grant No. 11472216). The first author gratefully acknowledges the support from China Scholarship Council (CSC) and German Aerospace Center (DLR). The authors thank for helpful discussion of Dr. Wei Hu, Dr. Ning Guo, and Dr. Shun He.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Chun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XC., Yang, ZC., Gu, YS. et al. Aeroelastic effect on modal interaction and dynamic behavior of acoustically excited metallic panels. Nonlinear Dyn 90, 1501–1517 (2017). https://doi.org/10.1007/s11071-017-3792-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3792-7

Keywords

Navigation