Skip to main content
Log in

Symmetry analysis and conservation laws to the space-fractional Prandtl equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies the Lie point symmetries, conservation laws and invariant solutions to the space-fractional Prandtl equation with the Riemann–Liouville derivative. Exploiting the classical Lie symmetry analysis method extended to fractional equations, three vector fields are calculated, which were used to reduce the fractional partial differential equation into an ordinary differential equation through similarity transformation. Further, it is found that the fractional Prandtl equation is nonlinearly self-adjoint. Therefore, the nonlinear self-adjointness method not requiring the existence of a Lagrangian is utilized to explore the conservation laws for this equation. Three conservation laws are constructed, and one of them is a trivial conservation law. Finally, due to the difficulties of obtaining analytical solution for the ordinary equation, similarity solutions are presented numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This result was pointed out by Prof. Lukashchuk.

References

  1. Ovler, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)

    Google Scholar 

  2. Bluman, G.W., Cheviakov, A.F., Anco, S.: Applications of Symmetry Methods to Partial Differential Equations. Springer, New York (2010)

    Book  MATH  Google Scholar 

  3. Ma, P.K.H., Hui, W.H.: Similarity solutions of the two-dimensional unsteady boundary-layer equations. J. Fluid Mech. 216, 537–559 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dholey, S., Gupta, A.S.: Unsteady separated stagnation-point flow of an incompressible viscous fluid on the surface of a moving porous plate. Phys. Fluids 25(2), 023601 (2013)

    Article  MATH  Google Scholar 

  5. Jafari, H., Kadkhoda, N., Baleanu, D.: Fractional Lie group method of the time-fractional Boussinesq equation. Nonlinear Dyn. 81(3), 1569–1574 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  6. Wang, G.W., Kara, A.H., Fakhar, K.: Nonlocal symmetry analysis and conservation laws to an third-order Burgers equation. Nonlinear Dyn. 83(4), 2281–2292 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  7. Schlichting, H., Gersten, K.: Boundary Layer Theory. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  8. Buckwar, E., Luchko, Y.: Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 227(1), 81–97 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, SYu.: Continuous transformation groups of fractional differential equations. Vestn. UGATU 9, 125–135 (2007)

    MATH  Google Scholar 

  10. Leo, R.A., Sicuro, G., Tempesta, P.: A foundational approach to the Lie theory for fractional order partial differential equations. Fract. Calc. Appl. Anal. 20, 212–231 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  11. Sahadevan, R., Bakkyaraj, T.: Invariant analysis of time fractional generalized Burgers and Korteweg–de Vries equations. J. Math. Anal. Appl. 393(2), 341–347 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bakkyaraj, T., Sahadevan, R.: Invariant analysis of nonlinear fractional ordinary differential equations with Riemann–Liouville fractional derivative. Nonlinear Dyn. 80(1–2), 447–455 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lukashchuk, S.Yu., Makunin, A.V.: Group classification of nonlinear time-fractional diffusion equation with a source term. Appl. Math. Comput. 257, 335–343 (2015)

    MATH  MathSciNet  Google Scholar 

  14. Wang, G.W., Kara, A.H., Fakhar, K.: Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation. Nonlinear Dyn. 82(1–2), 281–287 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ibragimov, N.H.: A new conservation theorem. J. Math. Anal. Appl. 333(1), 311–328 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ibragimov, N.H.: Nonlinear self-adjointness and conservation laws. J. Phys. A Math. Theor. 44(43), 432002 (2011)

    Article  MATH  Google Scholar 

  17. Anco, S., Bluman, G.W.: Direct construction of conservation laws from field equations. Phys. Rev. Lett. 78(15), 2869 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Naz, R., Mahomed, F.M., Mason, D.P.: Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics. Appl. Math. Comput. 205(1), 212–230 (2008)

    MATH  MathSciNet  Google Scholar 

  19. Naz, R., Mahomed, F.M., Chaudhry, A.: A partial lagrangian method for dynamical systems. Nonlinear Dyn. 84(3), 1783–1794 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ruggieri, M., Speciale, M.P.: On the construction of conservation laws: a mixed approach. J. Math. Phys. 58(2), 023510 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lukashchuk, SYu.: Conservation laws for time-fractional subdiffusion and diffusion-wave equations. Nonlinear Dyn. 80(1–2), 791–802 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lukashchuk, SYu.: Constructing conservation laws for fractional-order integro-differential equations. Theor. Math. Phys. 184(2), 1049–1066 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gazizov, R.K., Ibragimov, N.H., Lukashchuk, SYu.: Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations. Commun. Nonlinear Sci. Numer. Simul. 23(1–3), 153–163 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rui, W.J., Zhang, X.Z.: Lie symmetries and conservation laws for the time fractional Derrida–Lebowitz–Speer–Spohn equation. Commun. Nonlinear Sci. Numer. Simul. 34, 38–44 (2016)

    Article  MathSciNet  Google Scholar 

  25. Chorin, A.J., Marsden, J., Marsden, J.: A Mathematical Introduction to Fluid Mechanics. Springer, New York (1990)

    Book  MATH  Google Scholar 

  26. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional adams method. Numer. Algorithms 36(1), 31–52 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Li, C.P., Tao, C.X.: On the fractional Adams method. Comput. Math. Appl. 58(8), 1573–1588 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Liu, Q.X., Liu, J.K., Chen, Y.M.: An explicit hybrid method for multi-term fractional differential equations based on Adams and Runge–Kutta schemes. Nonlinear Dyn. 84(4), 2195–2203 (2016)

    Article  MathSciNet  Google Scholar 

  29. Ford, N.J., Connolly, J.A.: Comparison of numerical methods for fractional differential equations. Commun. Pure Appl. Anal. 5(2), 289–307 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Bluman, G.W., Anco, S.: Symmetry and Integration Methods for Differential Equations. Springer, New York (2008)

    MATH  Google Scholar 

  31. Leo, R.A., Sicuro, G., Tempesta, P.: A theorem on the existence of symmetries of fractional PDEs. C. R. Math. 352(3), 219–222 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  32. Pan, M.Y., Zheng, L.C., Liu, F.W., Zhang, X.X.: Lie group analysis and similarity solution for fractional Blasius flow. Commun. Nonlinear Sci. Numer. Simul. 37, 90–101 (2016)

    Article  MathSciNet  Google Scholar 

  33. Jefferson, G.F., Carminati, J.: Fracsym: automated symbolic computation of lie symmetries of fractional differential equations. Comput. Phys. Commun. 185(1), 430–441 (2014)

  34. Glauert, M.B.: The wall jet. J. Fluid Mech. 1(06), 625–643 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  35. Naz, R., Mason, D.P., Mahomed, F.M.: Conservation laws and conserved quantities for laminar two-dimensional and radial jets. Nonlinear Anal. Real World Appl. 10(5), 2641–2651 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272(1), 368–379 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Agrawal, O.P.: Fractional variational calculus and the transversality conditions. J. Phys. A Math. Gen. 39(33), 10375–10384 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  38. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science Limited, Amsterdam (2006)

    MATH  Google Scholar 

  39. Pedas, A., Tamme, E.: Piecewise polynomial collocation for linear boundary value problems of fractional differential equations. J. Comput. Appl. Math. 236(13), 3349–3359 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  40. Bai, Z.B., Sun, W.C.: Existence and multiplicity of positive solutions for singular fractional boundary value problems. Comput. Math. Appl. 63(9), 1369–1381 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  41. Liu, F.W., Meerschaert, M.M., McGough, R.J., Zhuang, P.H., Liu, Q.X.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16(1), 9–25 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  42. Coimbra, C.F.M.: Mechanics with variable-order differential operators. Annal. Phys. 12(11–12), 692–703 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  43. Sun, H.G., Zhang, Y., Chen, W., Reeves, D.M.: Use of a variable index fractional derivative model to capture transient dispersion in heterogeneous media. J. Contam. Hydrol. 157, 47–58 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Mingyang Pan would like to thank Prof. S. Yu. Lukashchuk(Ufa State Aviation Technical University) for his timely, pertinent and valuable guidance. This work was supported by the National Natural Science Foundation of China (No. 51276014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liancun Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, M., Zheng, L., Liu, C. et al. Symmetry analysis and conservation laws to the space-fractional Prandtl equation. Nonlinear Dyn 90, 1343–1351 (2017). https://doi.org/10.1007/s11071-017-3730-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3730-8

Keywords

Navigation