Skip to main content
Log in

Generalized time-fractional telegrapher’s equation in transmission line modeling

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An original generalization of telegrapher’s equation is derived by considering the topological generalization of the elementary circuit used in transmission line modeling in order to include the effects of charge accumulation along the line. Also, capacitive and inductive phenomena are assumed to display hereditary effects modeled by the use of fractional calculus. Although developed primarily for transmission lines, the proposed model can be applied to a wider class of diffusion-wave phenomena. The Laplace transform technique is used in obtaining the analytical solution of signal propagation along the line. Several examples illustrate good agreement between results obtained by means of the proposed analytical procedure and numerical techniques for inversion of the Laplace transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Atanackovic, T.M., Pilipovic, S., Zorica, D.: Diffusion wave equation with two fractional derivatives of different order. J. Phys. A Math. Theor. 40, 5319–5333 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Camargo, R.F., Capelas de Oliveira, E., Vaz Jr., J.: On the generalized Mittag-Leffler function and its application in a fractional telegraph equation. Math. Phys. Anal. Geom. 15, 1–16 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Camargo, R.F., Charnet, R., Capelas de Oliveira, E.: On some fractional Green’s functions. J. Math. Phys. 50, 043514-1–043514-12 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Camargo, R.F., Chiacchio, A.O., Capelas de Oliveira, E.: Differentiation to fractional orders and the fractional telegraph equation. J. Math. Phys. 49, 033505-1–033505-12 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Cascaval, R.C., Eckstein, E.C., Frota, C.L., Goldstein, J.A.: Fractional telegraph equations. J. Math. Anal. Appl. 276, 145–159 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chaurasia, V.B.L., Dubey, R.S.: Analytical solution for the generalized time-fractional telegraph equation. Fract. Differ. Calc. 3, 21–29 (2013)

    Article  MathSciNet  Google Scholar 

  7. Chen, J., Liu, F., Anh, V.: Analytical solution for the time-fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl. 338, 1364–1377 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Das, S., Vishal, K., Gupta, P.K., Yildirim, A.: An approximate analytical solution of time-fractional telegraph equation. Appl. Math. Comput. 217, 7405–7411 (2011)

    MathSciNet  MATH  Google Scholar 

  9. de Hoog, F.R., Knight, J.H., Stokes, A.N.: An improved method for numerical inversion of Laplace transforms. SIAM J. Sci. Stat. Comput. 3, 357–366 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dzieliński, A., Sarwas, G., Sierociuk, D.: Comparison and validation of integer and fractional order ultracapacitor models. Adv. Differ. Equ. 2011(11), 1–15 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Dzieliński, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Acad. Sci. Tech. Sci. 58, 583–592 (2010)

    MATH  Google Scholar 

  12. Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, Volume 378 of CISM Courses and Lecture Notes. Springer, New York (1997)

  13. Hariharan, G., Rajaraman, R., Mahalakshmi, M.: Wavelet method for a class of space and time fractional telegraph equations. Int. J. Phys. Sci. 7, 1591–1598 (2012)

    Article  Google Scholar 

  14. Heaviside, O.: Electromagnetic Theory, vol. II. Chelsea Publishing Company, New York (1899)

    MATH  Google Scholar 

  15. Huang, F.: Analytical solution for the time-fractional telegraph equation. J. Appl. Math. 2009, 890158-1–890158-9 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jesus, I.S., Machado, J.A.T.: Development of fractional order capacitors based on electrolyte processes. Nonlinear Dyn. 56, 45–55 (2009)

    Article  MATH  Google Scholar 

  17. Jiang, W., Lin, Y.: Representation of exact solution for the time-fractional telegraph equation in the reproducing kernel space. Commun. Nonlinear Sci. Numer. Simul. 16, 3639–3645 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier B.V, Amsterdam (2006)

    MATH  Google Scholar 

  19. Machado, J.A.T., Galhano, A.M.S.F.: Fractional order inductive phenomena based on the skin effect. Nonlinear Dyn. 68, 107–115 (2012)

    Article  MathSciNet  Google Scholar 

  20. Martin, R., Quintana, J.J., Ramos, A., Nuez, I.: Modeling electrochemical double layer capacitor, from classical to fractional impedance. In: Electrotechnical Conference, MELECON 2008, The 14th IEEE Mediterranean, pp. 61–66. Ajaccio, Corsica, France (2008)

  21. Momani, S.: Analytic and approximate solutions of the space- and time-fractional telegraph equations. Appl. Math. Comput. 170, 1126–1134 (2005)

  22. Orsingher, E., Beghin, L.: Time-fractional telegraph equations and telegraph processes with Brownian time. Probab. Theory Relat. Fields 128, 141–160 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Orsingher, E., Zhao, X.: The space-fractional telegraph equation and the related fractional telegraph process. Chin. Ann. Math. 24B, 45–56 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  25. Qi, H., Jiang, X.: Solutions of the space-time fractional Cattaneo diffusion equation. Phys. A 390, 1876–1883 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Quintana, J.J., Ramos, A., Nuez, I.: Modeling of an EDLC with fractional transfer functions using Mittag-Leffler equations. Math. Probl. Eng. 2013, 807034-1–807034-7 (2013)

    Article  Google Scholar 

  27. Radwan, A.G., Fouda, M.E.: Optimization of fractional-order RLC filters. Circuits Syst. Signal Process. 32, 2097–2118 (2013)

    Article  MathSciNet  Google Scholar 

  28. Radwan, A.G., Salama, K.N.: Fractional-order RC and RL circuits. Circuits Syst. Signal Process. 31, 1901–1915 (2012)

    Article  MathSciNet  Google Scholar 

  29. Rapaić, M.R., Jeličić, Z.D.: Optimal control of a class of fractional heat diffusion systems. Nonlinear Dyn. 62, 39–51 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schäfer, I., Krüger, K.: Modelling of coils using fractional derivatives. J. Magn. Magn. Mater. 307, 91–98 (2006)

    Article  Google Scholar 

  31. Shang, Y., Fei, W., Yu, H.: A fractional-order RLGC model for terahertz transmission line. In: IEEE MTT-S International Microwave Symposium Digest (IMS), pp. 1–3. Seattle, WA (2013)

  32. Soubhia, A.L., Camargo, R.F., Capelas de Oliveira, E., Vaz Jr., J.: Theorem for series in three-parameter Mittag-Leffler function. Fract. Calc. Appl. Anal. 13, 9–20 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Süße, R., Domhardt, A., Reinhard, M.: Calculation of electrical circuits with fractional characteristics of construction elements. Forsch Ing. 69, 230–235 (2005)

    Article  Google Scholar 

  34. Yakubovich, S., Rodrigues, M.M.: Fundamental solutions of the fractional two-parameter telegraph equation. Integral Transforms Spec. Funct. 23, 509–519 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang-Yang, C., Yu, S-H.: A compact fractional-order model for terahertz composite right/left handed transmission line. In: General Assembly and Scientific Symposium (URSI GASS), 2014 XXXIth URSI, pp. 1–4. Beijing (2014)

  36. Zhang, S.: Solution of semi-boundless mixed problem for time-fractional telegraph equation. Acta Math. Appl. Sin. Engl. Ser. 23, 611–618 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Serbian Ministry of Science, Education and Technological Development, under Grants III42004 (SC), 174005 (DZ), and TR32018, TR33013 (MRR), as well as by Provincial Government of Vojvodina under Grant 114-451-2098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan R. Rapaić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cvetićanin, S.M., Zorica, D. & Rapaić, M.R. Generalized time-fractional telegrapher’s equation in transmission line modeling. Nonlinear Dyn 88, 1453–1472 (2017). https://doi.org/10.1007/s11071-016-3322-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3322-z

Keywords

Navigation