Skip to main content
Log in

Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (\(0<\alpha\le 1\)) of the derivative operator and we found the traditional solutions for the limiting case of \(\alpha =1\). We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Saadatmandi, M. Deghghan, Comput. Math. Appl. 59, 1326 (2010)

    Article  MathSciNet  Google Scholar 

  2. Y. Zhou, F. Jiao, J. Li, Nonlinear Anal. 71, 2724 (2009)

    Article  MathSciNet  Google Scholar 

  3. L. Galeone, R. Garrappa, J. comput. Appl. Math. 228, 548 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. J.C. Trigeassou, N. Maamri, J. Sabatier, A. Oustaloup, Signal Process. 91, 437 (2011)

    Article  Google Scholar 

  5. W. Deng, Nonlinear Anal. 72, 1768 (2010)

    Article  MathSciNet  Google Scholar 

  6. F. Ghoreishi, S. Yazdani, Comput. Math. Appl. 61, 30 (2011)

    Article  MathSciNet  Google Scholar 

  7. J.T. Edwards, N.J. Ford, A.C. Simpson, J. Comput. Appl. Math. 148, 401 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Muslim, Math. Comput. Model. 49, 1164 (2009)

    Article  Google Scholar 

  9. A.M.A. El-Sayed, M. Gaber, Phys. Lett. A 359, 175 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. A.M.A. El-Sayed, S.H. Behiry, W.E. Raslan, Comput. Math. Appl. 59, 1759 (2010)

    Article  MathSciNet  Google Scholar 

  11. J.H. He, Commun. Nonlinear Sci. Numer. Simul. 2, 230 (1997)

    Article  ADS  Google Scholar 

  12. G. Wu, E.W.M. Lee, Phys. Lett. A 374, 2506 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Guo, L. Mei, Phys. Lett. A 375, 309 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  14. J.H. He, Comput. Methods Appl. Mech. Eng. 178, 257 (1999)

    Article  ADS  Google Scholar 

  15. J.H. He, Int. J. Non-Linear Mech. 35, 37 (2000)

    Article  ADS  Google Scholar 

  16. Z. Odibat, S. Momani, Appl. Math. Lett. 21, 194 (2008)

    Article  MathSciNet  Google Scholar 

  17. M. Cui, J. Comput. Phys. 228, 7792 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. Q. Huang, G. Huang, H. Zhan, Adv. Water Resour. 31, 1578 (2008)

    Article  ADS  Google Scholar 

  19. S. Zhang, H.Q. Zhang, Phys. Lett. A 375, 1069 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  20. S.M. Guo, L.Q. Mei, Y. Li, Y.F. Sun, Phys. Lett. A 376, 407 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  21. B. Lu, Phys. Lett. A 376, 2045 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  22. G. Jumarie, Comput. Math. Appl. 51, 1367 (2006)

    Article  MathSciNet  Google Scholar 

  23. I. Petráš, Chaos, Solitons Fractals 38, 140 (2008)

    Article  ADS  Google Scholar 

  24. M.L. Wang, X.Z. Li, J.L. Zhang, Phys. Lett. A 372, 417 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. E.M.E. Zayed, M. Abdelaziz, WSEAS Trans. Math. 10, 115 (2011)

    Google Scholar 

  26. M.L. Wang, J.L. Zhang, X.Z. Li, Appl. Math. Comput. 206, 321 (2008)

    MathSciNet  Google Scholar 

  27. E.M.E. Zayed, WSEAS Trans. Math. 10, 56 (2011)

    Google Scholar 

  28. I. Aslan, Appl. Math. Comput. 215, 3140 (2009)

    MathSciNet  Google Scholar 

  29. B. Ayhan, A. Bekir, Commun. Nonlinear Sci. Numer. Simul. 17, 3490 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  30. E.M.E. Zayed, K.A. Gepreel, WSEAS Trans. Math. 10, 270 (2011)

    Google Scholar 

  31. B. Tang, Y. He, L. Wei, S. Wang, Phys. Lett. A 375, 3355 (2011)

    Article  ADS  Google Scholar 

  32. M.B. Hubert, G. Betchewe, S.Y. Doka, T.C. Kofane, Appl. Math. Comput. 239, 299 (2014)

    MathSciNet  Google Scholar 

  33. E. Tala-Tebue, D.C. Tsobgni-Fozap, A. Kenfack-Jiotsa, T.C. Kofane, Eur. Phys. J. Plus 129, 136 (2014)

    Article  Google Scholar 

  34. Z. Zai-Yun, G. Xiang-Yang, Y. De-Min, Z. Ying-Hui, L. Xin-Ping, Commun. Theor. Phys. 57, 764 (2012)

    Article  ADS  Google Scholar 

  35. Ji-Huan He, S.K. Elagan, Z.B. Li, Phys. Lett. A 376, 257 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  36. Vasily E. Tarasov, Commun. Nonlinear Sci. Numer. Simul. 30, 1 (2016)

    Article  MathSciNet  Google Scholar 

  37. H. Ertik, A.E. Çalik, H. Sirin, M. Sen, B. Öder, Rev. Mex. Fís. 61, 58 (2015)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Pierre Nguenang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fendzi-Donfack, E., Nguenang, J.P. & Nana, L. Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation. Eur. Phys. J. Plus 133, 32 (2018). https://doi.org/10.1140/epjp/i2018-11851-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11851-1

Navigation