Skip to main content
Log in

Dynamics and control of a multi-body planar pendulum

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

An Erratum to this article was published on 03 September 2015

Abstract

The explicit equations of motion for a general \(n\)-body planar pendulum are derived in a simple and concise manner. A new and novel approach for obtaining these equations using mathematical induction on the number bodies in the pendulum system is used. Assuming that the parameters of the system are precisely known, a simple method for its control that is inspired by analytical dynamics is developed. The control methodology provides closed-form nonlinear control and makes no approximations/linearizations of the nonlinear system. No a priori structure is imposed on the controller. Globally, asymptotic Lyapunov stability is achieved along with the minimization of a user-provided control cost at each instant of time. This control methodology is then extended to include uncertainties in the parameters of the system through the use of an additional continuous controller. Simulations showing the simplicity and efficacy of the approach are provided for a 10-body pendulum system whose model is only known imprecisely. The ease with which the uncertain system can be controlled to move from any initial state to various final so-called inverted configurations is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Eltohamy, K.H., Kuo, C.-Y.: Nonlinear generalized equations of motion for multi-link inverted pendulums. Int. J. Syst. Sci. 30, 505–515 (1999)

    Article  MATH  Google Scholar 

  2. Larcombe, L.J.: On the control of two-dimensional multi-link inverted pendulum: the form of the dynamic equations from choice of co-ordinate system. Int. J. Syst. Sci. 23, 2265–2289 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Lobas L. G.: Generalized Mathematical Model of an Inverted multi-link Pendulum with Follower Forces, 41(5), pp. 566–572, (2005)

  4. Lobas, L.G.: Dynamic behaviour of multi-link pendulums under follower forces. Int. Appl. Mech. 41(6), 587–613 (2005)

    Article  MathSciNet  Google Scholar 

  5. Cheng, P.-Y., Cheng-I, W., Chen, C.-K.: Symbolic derivation of dynamic equations of motion for robot manipulators using piogram symbolic method. IEEE J. Rob. Autom. 4(6), 599–609 (1988)

    Article  Google Scholar 

  6. Udwadia, F. E.: A new approach to stable optimal control of complex nonlinear dynamical systems. J. Appl. Mech. 81(3), (2013)

  7. Çimen T.: State-dependent Riccati equation (SDRE) control: a survey. In: Proceedings of the 17th world congress, IFAC, Seoul, Korea, July 6–11, (2008)

  8. Sontag, E.D.: A universal construction of Artstein’s theorem on nonlinear stabilization. Syst. Control Lett. 13(2), 117–123 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Freeman, R.A., Koktovic, P.V.: Inverse optimality in robust stabilization. SIAM J. Control Optim. 34, 1365–1392 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Khalil, H.K.: Nonlinear Systems. Prentice Hall, New Jersey (2002)

    MATH  Google Scholar 

  11. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    Google Scholar 

  12. Åström, K.J., Furuta, K.: Swinging up a pendulum by energy control. Automatica 36, 287–295 (2000)

    Article  MATH  Google Scholar 

  13. Ibáñez, C.A., Azuela, J.H.S.: Stabilization of the Furuta pendulum based on a Lyapunov function. Nonlinear Dyn. 49, 1–8 (2007)

    Article  MATH  Google Scholar 

  14. Ibáñez, C.A., Castanon, M.S., Cortés, N.C.: Output feedback stabilization of the inverted pendulum system: a Lyapunov approach. Nonlinear Dyn. 70, 767–777 (2012)

    Article  MATH  Google Scholar 

  15. Udwadia, F.E.: Analytical Dynamics. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  16. Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. R. Soc. Lond. Ser. A 439, 407–410 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Udwadia, F.E., Kalaba, R.E.: What is the general form of explicit equations of motion for constrained mechanical systems? J. Appl. Mech. 69(3), 335–339 (1992)

    Article  MathSciNet  Google Scholar 

  18. Udwadia, F.E.: A new perspective on the tracking control of nonlinear structural and mechanical systems. Proc. R. Soc. Lond. Ser. A 459, 1783–1800 (2003)

  19. Udwadia, F.E.: Optimal tracking control of nonlinear dynamical systems. Proc. R. Soc. Lond. Ser. A 464, 2341–2363 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Udwadia, F.E., Schutte, A.D.: A unified approach to rigid body rotational dynamics and control. Proc. R. Soc. Lond. Ser. A 468, 395–414 (2012)

    Article  MathSciNet  Google Scholar 

  21. Utkin, V.I.: Sliding modes and their application in variable structure systems. Mir Publishers (English Translation). Moscow, Russia (1978)

  22. Young, K.D., Utkin, V.I., Özgüner, Ü.: A control engineer’s guide to sliding mode control. IEEE Trans. Control Syst. Technol. 7(3), 328–342 (1999)

    Article  Google Scholar 

  23. Spurgeon, S.K.: Sliding mode observers: a survey. Int. J. Syst. Sci. 39(8), 751–764 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9/10), 924–941 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Qu, Z., Dorsey, J.F.: Robust control by two Lyapunov functions. Int. J. Control 55(6), 1335–1350 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Qu, Z.: Asymptotic stability of controlling uncertain dynamical systems. Int. J. Control 59(5), 1345–1355 (1994)

    Article  MATH  Google Scholar 

  27. Corless, M.: Control of uncertain nonlinear systems. J. Dyn. Syst. Meas. Control 115, 362–372 (1993)

    Article  MATH  Google Scholar 

  28. Udwadia, F. E., Wanichanon, T.: Control of uncertain nonlinear multibody mechanical systems. J. Appl. Mech. 81(4), 041020 (2014)

  29. Udwadia, F.E., Koganti, P.B., Wanichanon, T., Stipanović, D.M.: Decentralized control of nonlinear dynamical systems. Int. J. Control 87(4), 827–843 (2014)

    Article  MATH  Google Scholar 

  30. Udwadia, F.E., Wanichanon, T., Cho, H.: Methodology for satellite formation-keeping in the presence of system uncertainties. J. Guid. Control Dyn. 37(5), 1611–1624 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firdaus E. Udwadia.

Appendix

Appendix

In this section, the proofs for the results regarding the additional controller used in Sect. 4 are provided. For convenience, we recall the following.

The equation of motion of the controlled nominal system is

$$\begin{aligned} M(\theta )\ddot{\theta }=Q(\theta ,\dot{\theta })+Q^{C}(t). \end{aligned}$$
(49)

The equation of motion of the controlled actual system is

$$\begin{aligned} M_a (\theta _a )\ddot{\theta }_a =Q_a (\theta _a ,\dot{\theta }_a )+Q^{C}(t)+Q^{u}(\theta _a ,\dot{\theta }_a ). \end{aligned}$$
(50)

In the above equation, the additional (generalized) control force \(Q^{u}\) is computed using the expression

$$\begin{aligned} Q^{u}=-\beta (s/\varepsilon ) \end{aligned}$$
(51)

where \(\varepsilon \) is a small positive number, \(s\) is the sliding variable

$$\begin{aligned} s:=\dot{e}_a +ke_a , \quad k>0, \end{aligned}$$
(52)

and \(\beta \) is a positive number satisfying the condition

$$\begin{aligned}&\beta \ge \frac{\left\| {\delta \ddot{q}} \right\| +k\left\| {\dot{e}_a } \right\| }{\lambda _{\min } }, \forall t,\hbox { where } \nonumber \\&\quad \lambda _{\min }:=\min \{eigenvalues\hbox { of }M_a^{-1} \}. \end{aligned}$$
(53)

In Eq. (53), \(\delta \ddot{q}\) is a quantity defined as,

$$\begin{aligned} \delta \ddot{q}:=M_a^{-1} (Q_a +Q^{C})-M^{-1}(Q+Q^{C}), \end{aligned}$$
(54)

and \(\left\| {\hbox {.}} \right\| \) represents \(L_2 \) norm of a vector.

Result 1: The additional control force \(Q^{u}\) given by

$$\begin{aligned} Q^{u}=-\beta (s/\varepsilon ) \end{aligned}$$
(55)

where \(\varepsilon \) is a small positive number and \(\beta \) is a positive number satisfying the condition given in Eq. (53) ensures that the controlled actual system

$$\begin{aligned} M_a (\theta _a )\ddot{\theta }_a =Q_a (\theta _a ,\dot{\theta }_a )+Q^{C}(t)+Q^{u}(\theta _a ,\dot{\theta }_a ). \end{aligned}$$
(56)

stays with in the region \(\Omega _\varepsilon \) defined by

$$\begin{aligned} \Omega _\varepsilon :=\left\{ {s\in R^{n}|\left\| s \right\| \le \varepsilon } \right\} . \end{aligned}$$
(57)

Proof

Noting the definition of the sliding manifold in Eq. (52), its derivative with respect to time is,

$$\begin{aligned} \dot{s}(t)=\ddot{e}_a +k\dot{e}_a . \end{aligned}$$
(58)

Upon differentiating the tracking error \(e_a (t)=\theta _a (t)-\theta (t)\) twice, we have

$$\begin{aligned} \ddot{e}_a (t)=\ddot{\theta }_a (t)-\ddot{\theta }(t). \end{aligned}$$
(59)

Using the equations of motion of the controlled nominal system (Eq. 49) and the controlled actual system (Eq. 56), Eq. (59) becomes

$$\begin{aligned} \ddot{e}_a= & {} M_a^{-1} (Q_a +Q^{C})-M^{-1}(Q+Q^{C})+M_a^{-1} Q^{u}\nonumber \\= & {} \delta \ddot{q}+M_a^{-1} Q^{u}. \end{aligned}$$
(60)

The last equality above is obtained from the definition of \(\delta \ddot{q}\) in Eq. (54). Thus, the time derivative of the sliding manifold can be simplified using Eq. (60) as,

$$\begin{aligned} \dot{s}(t)=\ddot{e}_a +k\dot{e}_a =\delta \ddot{q}+M_a^{-1} Q^{u}+k\dot{e}_a . \end{aligned}$$
(61)

Considering the Lyapunov function

$$\begin{aligned} V_a =\frac{1}{2}s^{T}s, \end{aligned}$$
(62)

its rate of change along the trajectories of the dynamical system is given by

$$\begin{aligned} \dot{V}_a= & {} s^{T}\dot{s}\nonumber \\= & {} s^{T}(\delta \ddot{q}+M_a^{-1} Q^{u}+k\dot{e}_a )\nonumber \\= & {} s^{T}(\delta \ddot{q}-M_a^{-1} \beta \left( {\frac{s}{\varepsilon }} \right) +k\dot{e}_a ). \end{aligned}$$
(63)

Observing that \(s^{T}M_a^{-1} s\ge \lambda _{\min } \left\| s \right\| ^{2}\), we have

$$\begin{aligned} \dot{V}_a\le & {} \left\| s \right\| \left\| {\delta \ddot{q}} \right\| +k\left\| s \right\| \left\| {\dot{e}_a } \right\| -\beta \lambda _{\min } \frac{\left\| s \right\| ^{2}}{\varepsilon } \nonumber \\= & {} \left\| s \right\| \left( {\left\| {\delta \ddot{q}} \right\| +k\left\| {\dot{e}_a } \right\| -\beta \lambda _{\min } \frac{\left\| s \right\| }{\varepsilon }} \right) . \end{aligned}$$
(64)

The region \(\Omega _\varepsilon \) is defined such that \(\left\| s \right\| \le \varepsilon \), and we have \(\left\| s \right\| /\varepsilon >1\) outside \(\Omega _\varepsilon \). Hence outside \(\Omega _\varepsilon \), the right-hand side of Eq. (64) is strictly negative when \(\beta \ge \frac{\left\| {\delta \ddot{q}} \right\| +k\left\| {\dot{e}_a } \right\| }{\lambda _{\min } }\). Since the controlled actual system starts inside the region \(\Omega _\varepsilon \), it stays within this attracting region and cannot escape from it. \(\square \)

As pointed out in Remark 5, if the nominal system and the uncertain system do not start with the same initial conditions, then any trajectories of the controlled uncertain system that start from outside \(\Omega _\varepsilon \) are globally attracted to the region \(\Omega _\varepsilon \).

Result 2: If the controlled actual system is restricted to stay within the region \(\Omega _\varepsilon \), the errors in tracking the nominal system are bounded by,

$$\begin{aligned} \left| {e_{a,i} } \right| \le \frac{1}{k}\varepsilon , \left| {\dot{e}_{a,i} } \right| \le 2\varepsilon , i=1,2,\cdots ,n. \end{aligned}$$
(65)

Proof

Inside the region \(\Omega _\varepsilon \), \(\left\| s \right\| \le \varepsilon \) and hence,

$$\begin{aligned} \left| {s_i } \right| \le \varepsilon ,i=1\cdots n. \end{aligned}$$
(66)

From the relation \(s_i =\dot{e}_{a,i} +ke_{a,i} \), we get,

$$\begin{aligned} \left| {\dot{e}_{a,i} +ke_{a,i} } \right| \le \varepsilon ,i=1\cdots n. \end{aligned}$$
(67)

This inequality can be alternatively expressed as,

$$\begin{aligned} -\varepsilon \le \dot{e}_{a,i} +ke_{a,i} \le \varepsilon , \end{aligned}$$
(68)

which can further be simplified to

$$\begin{aligned} -\varepsilon -ke_{a,i} \le \dot{e}_{a,i} \le \varepsilon -ke_{a,i} . \end{aligned}$$
(69)

Considering \(e_{a,i} \) as a dynamical system, if we can prove that \(e_{a,i} \dot{e}_{a,i} <0\) (which is the derivative of the Lyapunov function \(\frac{1}{2}e_{a,i} e_{a,i} )\) outside a region \(L_\varepsilon ^i \), we can conclude that the region \(L_\varepsilon ^i \) is an attracting region. Defining \(L_\varepsilon ^i \) as,

$$\begin{aligned} L_\varepsilon ^i :=\left\{ {e_{a,i} \in R|\left| {e_{a,i} } \right| \le \frac{1}{k}\varepsilon } \right\} , \end{aligned}$$
(70)

there are two possible cases in which \(e_{a,i} \) could lie outside \(L_\varepsilon ^i \). Let us look at both of them.

Case 1: If \(e_{a,i} >\frac{1}{k}\varepsilon >0\), then \(\varepsilon -ke_{a,i} <0\). From Eq. (69), we then have

$$\begin{aligned} e_{a,i} \dot{e}_{a,i} \le e_{a,i} \left( {\varepsilon -ke_{a,i} } \right) <0. \end{aligned}$$
(71)

Case 2: If \(e_{a,i} <-\frac{1}{k}\varepsilon <0\), then \(\varepsilon +ke_{a,i} <0\). Also, \(e_{a,i} <0\) and so from the left inequality in (69), we have,

$$\begin{aligned} e_{a,i} \dot{e}_{a,i} \le -e_{a,i} \left( {\varepsilon +ke_{a,i} } \right) <0. \end{aligned}$$
(72)

We note that initially \(e_{a,i} =0\), and therefore, it will remain inside the region \(L_\varepsilon ^i \) thereafter, or in other words, \(\left| {e_{a,i} } \right| \le \frac{1}{k}\varepsilon \). From relation (67), we observe that

$$\begin{aligned} \left| {\left| {\dot{e}_{a,i} } \right| -\left| {ke_{a,i} } \right| } \right| \le \left| {\dot{e}_{a,i} +ke_{a,i} } \right| \le \varepsilon , \end{aligned}$$
(73)

which further yields

$$\begin{aligned} \left| {\dot{e}_{a,i} } \right| \le \varepsilon +\left| {ke_{a,i} } \right| \le 2\varepsilon . \end{aligned}$$
(74)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udwadia, F.E., Koganti, P.B. Dynamics and control of a multi-body planar pendulum. Nonlinear Dyn 81, 845–866 (2015). https://doi.org/10.1007/s11071-015-2034-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2034-0

Keywords

Navigation