Skip to main content
Log in

Output feedback stabilization of the inverted pendulum system: a Lyapunov approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, we present an output feedback stabilization method for the Inverted Pendulum Cart (IPC) system around its unstable equilibrium point. The pendulum is initialized in the upper-half plane, and the position of the cart and the pendulum angular positions are always available. Our strategy was accomplished introducing a suitable coordinate change to obtain a nonlinear version of the original system, which is affine in the unmeasured velocities state. This fact allows us to adapt an observer based controller devoted to render the closed-loop system to the origin. The proposed observer based controller was designed using the direct Lyapunov method. This allows estimating the corresponding attraction domain for the whole system, which can be as large or as small as desired. While the corresponding closed-loop stability analysis was made using the LaSalle Invariance Theorem. Convincing numerical simulations were included to show the performance of the closed-loop system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For simplicity, we only write u p =u p (q) and u d =u d (q,p).

  2. Notice that

    $$\nabla_{q}^{2}\varPhi (q)|_{q=0}= \frac{k_{p}\Delta_{K}}{\psi (0)}, $$

    which implies that k p >0 and ψ(0)=(1+δ)k 2k 3>0.

  3. Letting Q ={q i,j }, where

    $$ \begin{array}{lll} q_{11}=1+\frac{1}{4h}, & q_{12}=-\frac{1}{2\varepsilon }, & q_{22}=\frac{1}{4\varepsilon^{2}}.\end{array}$$

References

  1. Dragomir, N.N., Yoshida, K.: A general formulation of under-actuated manipulator systems. In: Shirai, Y., Hirose, S. (eds.) Robotics Research: The Eight International Symposium. Springer, London (1998)

    Google Scholar 

  2. Spong, M.W.: Energy based control of a class of underactuated mechanical systems. In: IFAC World Congress, San Francisco, CA (1996)

    Google Scholar 

  3. Fantoni, I., Lozano, R.: Non-linear control for underactuated mechanical systems. In: Communications and Control Engineering. Springer, London (2002)

    Google Scholar 

  4. Ordaz-Oliver, J.P., Santos-Sánchez, O.J., López-Morales, V.: Toward a generalized sub-optimal control method of underactuated systems. Optim. Control Appl. Methods (2011). doi:10.1002/oca.999

    Google Scholar 

  5. Martinez, R., Alvarez, J.: A controller for 2-dof underactuated mechanical systems with discontinuous friction. Nonlinear Dyn. 53, 191–200 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sira-Ramirez, H., Agrawal, S.K.: Differentially Flat Systems. Dekker, New York (2004)

    MATH  Google Scholar 

  7. Chung, C.C., Hauser, J.: Nonlinear control of a swinging pendulum. Automatica 31(6), 851–862 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Seifried, R.: Integrated mechanical and control design of underactuated multibody systems. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-0087-2

    Google Scholar 

  9. Shiriaev, A.S., Pogromsky, A., Ludvigsen, H., Egeland, O.: On global properties of passivity-based control of an inverted pendulum. Int. J. Robust Nonlinear Control 10(4), 283–300 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Aguilar-Ibañez, C., Gutiérrez-Frias, O.: Controlling the inverted pendulum by means of a nested saturation function. Nonlinear Dyn. 53(4), 273–280 (2008)

    Article  Google Scholar 

  11. Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, New York (1995)

    MATH  Google Scholar 

  12. Krstic, M., Kokotovic, P.V., Kanellakopoulos, I.: Nonlinear and Adaptive Control Design, 1st edn. Wiley, New York (1995)

    Google Scholar 

  13. Marino, R., Tomei, P.: Nonlinear Control Design: Geometric, Adaptive and Robust. Prentice Hall International, Hertfordshire (1996)

    Google Scholar 

  14. Sepulchre, R., Janković, M., Kokotović, P.V.: Constructive nonlinear control. In: Communications and Control Engineering. Springer, Berlin (1997)

    Google Scholar 

  15. Jakubczyk, B., Respondek, W.: On the linearization of control systems. Bull. Acad. Polon. Sci. Math. 28, 517–522 (1980)

    MathSciNet  MATH  Google Scholar 

  16. Furuta, K.: Control of pendulum: from super mechano-system to human adaptive mechatronics. In: Proceedings of 42th IEEE Conference on Decision and Control, pp. 1498–1507 (2003)

    Google Scholar 

  17. Furuta, K., Iwase, M.: Swing-up time analysis of pendulum. Bull. Pol. Acad. Sci., Tech. Sci. 52(3), 153–163 (2004)

    MATH  Google Scholar 

  18. Aström, K.J., Furuta, K.: Swing up a pendulum by energy control. Automatica 36(2), 287–295 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fradkov, A.L.: Swinging control of nonlinear oscillations. Int. J. Control 64(6), 1189–1202 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mazenc, F., Praly, L.: Adding integrations, saturated controls, and stabilization for feedforward systems. IEEE Trans. Autom. Control 41(11), 1559–1578 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Teel, A.R.: A nonlinear small gain theorem for the analysis of control systems with saturation. IEEE Trans. Autom. Control 41(9), 1256–1270 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Spong, M.W., Praly, L.: Coordinated science, and centre automatique. In: Control of underactuated mechanical systems using switching and saturation. Springer, Berlin (1996)

    Google Scholar 

  23. Aracil, J., Gordillo, F.: The inverted pendulum: a benchmark in nonlinear control. In: Proc. WAC 2004, vol. 16, pp. 468–482. Seville, Spain (2004)

    Google Scholar 

  24. Aracil, J., Gordillo, F., Astrom, K.J.: A family of pumping-damping smooth strategies for swinging up a pendulum. In: Third IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Nagoya, Japan (2006)

    Google Scholar 

  25. Gordillo, F., Aracil, J.: A new controller for the inverted pendulum on a cart. Int. J. Robust Nonlinear Control 18(17), 1607–1621 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bloch, A.M., Chang, D., Leonard, N., Marsden, J.E.: Controlled Lagrangians and the stabilization of mechanical systems ii: potential shaping. IEEE Trans. Autom. Control 46(10), 1556–1571 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kelkar, A.G., Fang, B., White, W.N., Guo, X.: Feedback stabilization of underactuated nonlinear pendulum cart system using matching conditions. In: Proceedings of the American Control Conference, Anchorage, Alaska, USA, May 8–10, pp. 4696–4701 (2002).

    Google Scholar 

  28. Aguilar-Ibanez, C., Gutiérrez-Frias, O.O.: A simple model matching for the stabilization of an inverted pendulum cart system. Int. J. Robust Nonlinear Control 18(6), 688–699 (2008)

    Article  Google Scholar 

  29. Olfati-Saber, R.: Fixed point controllers and stabilization of the cart-pole and rotating pendulum. In: Proc. of the 38th IEEE Conf. on Decision and Control, Phoenix Az, vol. 2, pp. 1174–1181 (1999)

    Google Scholar 

  30. BenAbdallah, A., Mabrouk, M.: Semi-global output feedback stabilization for the cart-pendulum system. In: 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, December 12–15, 2011, vol. 50 (2011)

    Google Scholar 

  31. Mazenc, F., Vivalda, J.C.: Global asymptotic output feedback stabilization of feedforward systems. Eur. J. Control 8, 519–530 (2002)

    Article  Google Scholar 

  32. Acosta, J.A., Ortega, R., Astolfi, A., Mahindrakar, A.D.: Interconnectivity and damping assignment passivity-based control of mechanical systems with underactuation degree one. IEEE Trans. Autom. Control 50(12), 1936–1955 (2005)

    Article  MathSciNet  Google Scholar 

  33. Mahindrakar, A.D., Astolfi, A., Ortega, R., Viola, G.: Further constructive results on interconnection and damping assignment control of mechanical systems: the acrobot example. Int. J. Robust Nonlinear Control 16(14), 671–685 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. LaSalle, J., Lefschetz, S.: Stability by Lyapunov’s Direct Method with Applications. Academic Press, San Diego (1961)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Centro de Investigación en Computación of the Instituto Politecnico Nacional (CIC-IPN), and by the Secretaría de Investigación y Posgrado of the Instituto Politecnico Nacional (SIP-IPN), under Research Grants 20121712, 20121605 and 20120002; and by the CONACyT under research grant 132073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Aguilar-Ibáñez.

Appendix

Appendix

Verification of system (4)

Evidently, verifying the first two equations of system (4) is quite simple. The corresponding value of \(\dot{p}_{1}\) is directly obtained by substituting the transformation (3) in the first equation of system (2). Now, from transformation (3), it is very easy to verify the following equality:

$$ \dot{p}_{2}=\ddot{z}-\frac{\sin \theta \dot{\theta}^{2}}{1+\delta }+\frac{\cos \theta \ddot{\theta}}{1+\delta }. $$
(46)

And, observing that the accelerations \(\ddot{\theta}\) and \(\ddot{z}\), straightforwardly obtained from the normalized system (2), are given by

then substituting these accelerations into (46), we have, after some simple algebra, that \(\dot{p}_{2}=u/(1+\delta )\).

Convexity and boundedness of the set \(\varPhi (\rho )\leq \widetilde{c}\)

From (23) and (24), we have that Φ can be expressed as

$$ \varPhi (\rho )=\beta_{k}\log \biggl( \frac{\psi (0)}{\psi (\rho_{1})} \biggr) +\frac{k_{p}}{2}\rho_{2}^{2}, $$

where the coordinate map ρ=(q 1=ρ 1,ρ 2=q 2+ϒ(q 1)) is a one-to-one transformation, as long as ρ 1I 0. Hence, V is strictly positive definite and proper on the set \((\rho_{1},\rho_{2})\in (-\overline{\theta },\overline{\theta })\times \mathbb{R}\).

In order to show that the set Φ(ρ)≤ \(\widetilde{c}\) is a bounded and convex set, we must note that if Φ(ρ)< \(\widetilde{c}=\beta_{k}\log ( \psi (0)/\psi (\overline{\theta }) ) \), then \(\psi (\overline{\theta })<\psi (\rho_{1})\). Now remembering that (1+δ)k 2>k 3>0 and from the definition of \(\ \overline{\theta }\) and ε (see (27)), we have that

$$ 0<\varepsilon =\psi (\overline{\theta })<\psi (\rho_{1})=-k_{3}+(1+ \delta )k_{2}\cos \rho_{1}, $$

which implies that ρ 1I 0. Observe that the strict inequality excludes the singular points

$$ -k_{3}+(1+\delta )k_{2}\cos \overline{q}_{1}=0, $$

where \(\overline{q}_{1}\in (\overline{\theta },\pi /2) \cup (-\pi /2,-\overline{\theta })\). In a similar way, we can show that \(\vert \rho_{2}\vert \leq \sqrt{2\widetilde{c}/k_{p}}\). On the other hand, it is easy to check that the Hessian of Φ(ρ) is given by

$$ \nabla_{\rho }^{2}\varPhi (q_{1},\rho_{2})= \left [ \begin{array}{c@{\quad}c} \frac{\beta_{k}(1+\delta )k_{2}\psi (\rho_{1})}{\psi (\rho_{1})^{2}} & 0 \\ 0 & k_{p}\end{array} \right ] . $$

In fact, this Hessian is strictly positive for all ρ 1I 0. Therefore, Φ(ρ)≤c with \(0<c<\widetilde{c}\) is a bounded and convex set. Consequently, Φ(ρ) is positive definite and proper throughout the set W c given in (28).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilar-Ibáñez, C., Suarez-Castanon, M.S. & Cruz-Cortés, N. Output feedback stabilization of the inverted pendulum system: a Lyapunov approach. Nonlinear Dyn 70, 767–777 (2012). https://doi.org/10.1007/s11071-012-0493-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0493-0

Keywords

Navigation