Skip to main content
Log in

Dynamic Behavior of Multilink Pendulums under Follower Forces

  • Published:
International Applied Mechanics Aims and scope

Abstract

The results from studies of the dynamic behavior of a double pendulum under the action of a follower force are analyzed. It is pointed out that bifurcations and catastrophes of equilibrium states may occur at some values of the parameters. Differential equations are presented which describe the plane-parallel motion of a pendulum with an arbitrary number of links and angular and linear eccentricities of the follower force whose orientation depends on one parameter. The basic problems of dynamics of pendulums with different number of links are formulated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. A. Agafonov, “Andronov-Hopf bifurcation in the motion of a rotatry shaft,” Izv. Vuzov, Mashinostr., No. 1, 22–25 (1989).

  2. S. A. Agafonov, “Constructing a limit cycle for a rotary shaft,” Izv. Vuzov, Mashinostr., No. 12, 51–53 (1989).

  3. V. I. Arnol'd, Catastrophe Theory [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  4. B. S. Bardin and A. P. Markeev, “Stability of the equilibrium of a pendulum with vertically oscillating point of suspension,” Prikl. Mat. Mekh., 59, No.6, 922–929 (1995).

    Google Scholar 

  5. N. N. Bautin, Behavior of Dynamic Systems near the Stability Boundaries [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  6. V. V. Bolotin, Dynamic Stability of Elastic Systems [in Russian], Gostekhizdat, Moscow (1956).

    Google Scholar 

  7. V. V. Bolotin, Nonconservative Problems in the Theory of Elastic Stability [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  8. I. G. Boruk, L. G. Lobas, and L. D. Patricio, “Equilibrium states of an inverted double pendulum with a follower force acting at the elastically restrained upper end,” Izv. RAN, Mekh. Tverd. Tela, No. 5, 16–22 (2004).

  9. V. G. Verbitskii and L. G. Lobas, “Bifurcation and stability of stationary motions of pneumatic-tired vehicles in constant mechanical fields,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 1, 28–33 (1991).

  10. V. G. Verbitskii and L. G. Lobas, “Bifurcation of stationary states of multilink systems with rolling, ” Izv. RAN, Mekh. Tverd. Tela, No. 5, 46–52 (1997).

  11. V. G. Verbitskii and L. G. Lobas, “Real bifurcations of double-link systems with rolling,” Prikl. Mat. Mekh., 60, No.3, 418–425 (1996).

    Google Scholar 

  12. V. G. Verbitskii and L. G. Lobas, “Nonlinear stability and bifurcation sets of stationary states of wheeled robots with changing controls,” Probl. Upravl. Inform., No. 3, 35–51 (1996).

    Google Scholar 

  13. A. V. Darkov and G. S. Shpiro, Strength of Materials [in Russian], Vyssh. Shk., Moscow (1975).

    Google Scholar 

  14. V. A. Dzhupanov and Sv. V. Lilkova-Markova, “Dynamic stability of a fluid-conveying cantilevered pipe on an additional combined support,” Int. Appl. Mech., 39, No.2, 185–191 (2003).

    Article  Google Scholar 

  15. V. A. Dzhupanov and Sv. V. Lilkova-Markova, “Divergent instability domains of a fluid-conveying cantilevered pipe with a combined support,” Int. Appl. Mech., 40, No.3, 319–321 (2004).

    Article  Google Scholar 

  16. F. M. Dimentberg, Flexural Vibrations of Rotating Shafts [in Russian], Izd. AN SSSR, Moscow (1959).

    Google Scholar 

  17. Yu. K. Zhbanov, “Stability of a rotating shaft,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 3, 157–161 (1981).

  18. N. I. Zhinzher, “Influence of dissipative forces with incomplete dissipation on the stability of elastic forces,” Izv. RAN, Mekh. Tverd. Tela, No. 1, 149–155 (1994).

  19. P. L. Kapitsa, “Dynamic stability of a pendulum with oscillating point of suspension,” Zh. Exper. Teor. Fiz., 21, No.5, 588–598 (1951).

    Google Scholar 

  20. P. L. Kapitsa, “Pendulum with a vibrating suspension,” Usp. Fiz. Nauk, 44, No.1, 7–20 (1951).

    Google Scholar 

  21. V. V. Koval'chuk and V. L. Lobas, “Divergent bifurcations of a double pendulum,” Zb. Nauk. Prats' Kyiv. Univ. Ekonom. Tekhnol. Transp., Ser. Transp. Syst. Tekhnol., 3, 130–134 (2003).

    Google Scholar 

  22. V. V. Koval'chuk and L. G. Lobas, “The dynamic behavior of double-link rolling systems near the oscillatory-instability boundaries,” Prikl. Mekh., 33, No.5, 89–97 (1997).

    Google Scholar 

  23. V. P. Legeza, “Forced vibrations of an inverted pendulum with a heavy ball in its spherical recess under a periodic force,” Probl. Upravl. Inform., No. 1, 25–33 (2003).

  24. V. L. Lobas, “Influence of the nonlinear characteristics of elastic elements on the bifurcations of equilibrium states of a double pendulum with follower force,” Int. Appl. Mech., 41, No.2, 197–202 (2005).

    Article  Google Scholar 

  25. L. G. Lobas, “Self-excited vibration of a wheel on a swiveling landing gear with a nonlinear damper,” Prikl. Mat. Mekh., 45, No.4, 756–759 (1981).

    Google Scholar 

  26. L. G. Lobas, “Bifurcations of periodic motions of mobile double-link robots,” Probl. Upravl. Inform., No. 3, 139–152 (1998).

  27. L. G. Lobas, “Invariant manifolds and the behavior of symmetric dynamic systems near the stability boundary,” Prikl. Mekh., 32, No.5, 81–88 (1996).

    Google Scholar 

  28. L. G. Lobas, “Influence of the structure of forces on the stability of motion,” Mat. Fiz. Nelin. Mekh., No. 3 (37), 28–33 (1985).

  29. L. G. Lobas, “Dynamics of pneumatic-tired vehicle revisited,” Prikl. Mat. Mekh., 43, No.4, 753–757 (1979).

    Google Scholar 

  30. L. G. Lobas, “Theory of rolling of a group of an arbitrary number of elastically deformable bodies modeling a multicomponent tractor-trailer,” Int. Appl. Mech., 23, No.3, 296–299 (1987).

    Google Scholar 

  31. L. G. Lobas, “Directional stability of two-member wheeled machines,” Int. Appl. Mech., 25, No.4, 414–420 (1989).

    Google Scholar 

  32. L. G. Lobas, “Mathematical model of coupled systems with rolling,” Int. Appl. Mech., 20, No.6, 566–572 (1984).

    Google Scholar 

  33. L. G. Lobas, Mechanics of Multilink Systems with Rolling [in Russian], Naukova Dumka, Kiev (2000).

    Google Scholar 

  34. L. G. Lobas, “Nonlinear stability and pitchfork bifurcations in dynamic systems with elementary symmetry,” Prikl. Mat. Mekh., 60, No.2, 327–332 (1996).

    Google Scholar 

  35. L. G. Lobas, “A limit cycle emerging from a focal point in dynamic systems with elementary symmetry,” Prikl. Mekh., 33, No.2, 80–88 (1997).

    Google Scholar 

  36. L. G. Lobas, “Generalized mathematical model of an inverted multilink pendulum with follower force,” Int. Appl. Mech., 41, No.5, 566–572 (2005).

    Article  Google Scholar 

  37. L. G. Lobas, “Perturbations in the trajectories of wheeled vehicles,” Int. Appl. Mech., 21, No.10, 995–999 (1985).

    Google Scholar 

  38. L. G. Lobas, “Existence of periodic motions of dynamic systems with elementary symmetry,” Prikl. Mekh., 33, No.1, 87–96 (1997).

    Google Scholar 

  39. L. G. Lobas, “Controllability, stabilizability, and observability of the motion of wheeled vehicles,” Int. Appl. Mech., 23, No.4, 394–399 (1987).

    Google Scholar 

  40. L. G. Lobas, “Wobble in wheels with two degrees of freedom and an inclined orientation axis,” Int. App. Mech., 17, No.2, 200–205 (1981).

    Google Scholar 

  41. L. G. Lobas and I. G. Boruk, “Dynamic behavior of a rod compressed by a longitudinal force,” Zb. Nauk. Prats' Kyiv. Univ. Zalizn. Transp., 1, No.2, 105–111 (1998).

    Google Scholar 

  42. L. G. Lobas and I. G. Boruk, “Dynamic behavior of a compressed rod under a follower force of critical magnitude,” Zb. Nauk. Prats' Kyiv. Univ. Zalizn. Transp., 3, 105–111 (1999).

    Google Scholar 

  43. L. G. Lobas and I. G. Boruk, “Stability domains of an inverted double-link pendulum in special force fields,” Dop. NAN Ukrainy, No. 11, 74–78 (1999).

  44. L. G. Lobas and I. G. Boruk, “Disturbed motions of an inverted two-link pendulum with a follower force at the elastically restrained upper end,” Dop. NAN Ukrainy, No. 1, 48–51 (2000).

  45. L. G. Lobas and V. G. Verbitskii, Qualitative and Analytical Methods in the Dynamics of Wheeled Vehicles [in Russian], Naukova Dumka, Kiev (1990).

    Google Scholar 

  46. L. G. Lobas, “Dynamics of finite-dimensional systems under nonconservative position forces,” Int. Appl. Mech., 37, No.1, 38–65 (2001).

    Article  Google Scholar 

  47. L. G. Lobas and L. L. Lobas, “Bifurcations, stability, and catastrophes of equilibrium states of a double pendulum with asymmetric follower force,” Izv. RAN, Mekh. Tverd. Tela, No. 4, 139–149 (2004).

  48. L. G. Lobas and L. L. Lobas, “Influence of the orientation of the follower force on the stability domain of the upper equilibrium position of an inverted double pendulum,” Probl. Upravl. Inform., No. 6, 26–33 (2002).

  49. L. G. Lobas and L. L. Lobas, “Influence of the orientation of the follower force on the stability of the upper equilibrium position of an inverted double-link pendulum,” Mekh. Tverd. Tela, 31, 83–89 (2001).

    Google Scholar 

  50. L. G. Lobas and L. L. Lobas, “Simulation of the dynamic behavior of a one-dimensional elastic body under the action of an asymmetric follower force,” Electron. Modelir., 24, No.6, 19–31 (2002).

    Google Scholar 

  51. L. G. Lobas, D. V. Polyovyi, and V. L. Lobas, “Bifurcations and catastrophes of the equilibrium states of a double-link pendulum with hard nonlinear characteristics under the action of an asymmetric follower force,” Zb. Nauk. Prats' Kyiv. Univ. Ekonom. Tekhnol. Transp., Ser. Transp. Syst. Tekhnol., 4, 213–219 (2003).

    Google Scholar 

  52. L. G. Lobas and V. G. Khrebet, “Andronov-Hopf bifurcation and estimates of the attraction domain in double-link pendulums with rolling,” Izv. RAN, Mekh. Tverd. Tela, No. 3, 61–66 (1994).

  53. L. G. Lobas and V. G. Khrebet, “On limiting periodic motions of two-link pendular systems with rolling,” Int. Appl. Mech., 29, No.8, 667–674 (1993).

    Article  Google Scholar 

  54. L. G. Lobas and V. G. Khrebet, “Existence and uniqueness of periodic motion in double-link pendulums with rolling,” Izv. RAN, Mekh. Tverd. Tela, No. 5, 23–31 (1993).

  55. L. G. Lobas and V. G. Khrebet, “Integral manifold in the problem of Andronov-Hopf bifurcation in two-unit pendulum systems with rolling,” Int. Appl. Mech., 30, No.7, 549–556 (1994).

    Article  Google Scholar 

  56. L. G. Lobas and V. G. Khrebet, “Bifurcated formation of a limit cycle from a stable focus and evaluation of the region of attraction in two-unit pendulum systems with oscillation,” Int. Appl. Mech., 29, No.9, 731–737 (1993).

    Article  Google Scholar 

  57. A. I. Lur'e, Analytical Mechanics [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  58. A. M. Lyapunov, Collected Works [in Russian], Vol. 2, Izd. AN SSSR, Moscow-Leningrad (1956).

    Google Scholar 

  59. K. Magnus, “Der Einflu verschiedener Kraftearten auf die Stabilitat linearer Systeme,” Z. Angew. Math. Phys., 21, No.4, 523–534 (1970).

    Article  Google Scholar 

  60. D. R. Merkin, An Introduction to the Theory of Stability of Motion [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  61. D. R. Merkin, Gyroscopic Systems [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  62. D. R. Merkin, “Stability of steady motions of the axis of a rotor rotating in nonlinear bearings,” Prikl. Mat. Mekh., 47, No.3, 378–384 (1983).

    Google Scholar 

  63. E. L. Nikolai, “Theory of flexible shaft revisited,” Tr. Leningrad. Politekhn. Inst., No. 6, 3–15 (1937).

  64. B. V. Ostroumov, “Dynamic shock absorber in the form of an inverted pendulum with damping,” Izv. VUZov, Stroit., No. 9, 36–39 (2002).

  65. Ya. G. Panovko and S. V. Sorokin, “Quasistability of viscoelastic systems with follower forces,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 5, 135–139 (1987).

  66. A. P. Seiranyan, “Stabilization of nonconservative systems by dissipative forces and the uncertainty of the critical load,” Dokl. RAN, 348, No.3, 323–326 (1996).

    Google Scholar 

  67. J. M.T. Thompson, Instabilities and Catastrophes in Science and Engineering, Wiley, New York (1982).

    Google Scholar 

  68. G. Herrmann and R. W. Bungay, “On the stability of elastic systems subjected to nonconservative forces,” Trans. ASME, Ser. E, Appl. Mech, 31, No.3, 435–440 (1964).

    Google Scholar 

  69. G. Herrmann and Ing-Chang Jong, “Destabilizing effect of damping in nonconservative elastic systems,” Trans. ASME, Ser. E, Appl. Mech., 32, No.3, 592–597 (1965).

    Google Scholar 

  70. H. Ziegler, “Die Stabilitatskriterien der Elastomechanik,” Ing. Arch., 20, No.1, 49–56 (1952).

    Article  Google Scholar 

  71. D. J. Achesson, “A pendulum theorem,” Proc. Roy. Soc. London, Ser. A, 443, No.1917, 239–245 (1993).

    Google Scholar 

  72. I. G. Boruk and V. L. Lobas, “Evolutions of limit cycles in the stability domain of a double pendulum under variable follower force,” Int. Appl. Mech., 40, No.3, 337–344 (2004).

    Article  Google Scholar 

  73. I. G. Boruk and L. G. Lobas, “On the motion of a reversible double simple pendulum with tracking force,” Int. Appl. Mech., 35, No.7, 745–750 (1999).

    Google Scholar 

  74. I. G. Boruk and L. G. Lobas, “Stability of equilibrium for an inverted two-link mathematical pendulum with critical tracking forces,” Int. Appl. Mech., 35, No.9, 962–967 (1999).

    Google Scholar 

  75. P. Hagedorn, “On the destabilizing effect of non-linear damping in non-conservative systems with follower forces,” Int. J. Non-Linear Mech., 5, No.2, 341–358 (1970).

    Article  Google Scholar 

  76. M. G. Henders and A. C. Sondach, “‘In-the-large’ behavior of an inverted pendulum with linear stabilization,” Int. J. Non-Linear Mech., 27, No.1, 129–133 (1992).

    Article  Google Scholar 

  77. J.-D. Jin and Y. Matsuzaki, “Bifurcations in a two-degree-of freedom elastic system with follower forces,” J. Sound Vibr., 126, No.2, 265–277 (1988).

    Article  Google Scholar 

  78. J.-D. Jin and Y. Matsuzaki, “Stability and bifurcations of a double pendulum subjected to a follower force,” in: Proc. AIAA/ASME/ASCE/AHS/ASC 30th Structures, Structural Dynamics and Materials Conf. (Mobile, Ala, April 3–5, 1989), Pt. 1, Washington (1989), pp. 432–439.

  79. O. N. Kirilov and A. P. Seyranian, On the Stability Boundaries of Circulatory Systems, Preprint No. 51, Izd. MGU im. M. V. Lomonosova (Inst. Mekh.), Moscow (1999).

  80. V. V. Koval'chuk and V. L. Lobas, “Divergent bifurcations of a double pendulum under the action of an asymmetric follower force,” Int. Appl. Mech., 40, No.7, 821–828 (2004).

    Article  Google Scholar 

  81. L. G. Lobas, “Bifurcations of steady states and periodic motions of finite-dimensional dynamical systems with simple symmetry (survey),” Int. Appl. Mech., 34, No.1, 1–24 (1998).

    Google Scholar 

  82. L. G. Lobas, “Nonlinear stability and triple-equilibrium bifurcations in finite-dimensional dynamic systems with symmetry,” Engineering Simulation, 14, No.5, 713–725 (1997).

    Google Scholar 

  83. L. L. Lobas, “Influence of an asymmetric follower force on the stationary states of a double-link pendulum,” Int. Appl. Mech., 37, No.12, 1618–1623 (2001).

    Article  Google Scholar 

  84. L. G. Lobas, “On rolling systems,” Int. Appl. Mech., 36, No.5, 691–696 (2000).

    Article  Google Scholar 

  85. L. G. Lobas and V. V. Koval'chuk, “Influence of the nonlinearity of the elastic elements on the stability of a double pendulum with follower force in the critical case,” Int. Appl. Mech., 41, No.4, 455–461 (2005).

    Article  Google Scholar 

  86. L. G. Lobas and L. L. Lobas, “Bifurcations and catastrophes of the equilibrium states of an overturned double pendulum subjected to an asymmetric follower force,” Stability and Control: Theory and Applications, 4, No.2, 110–118 (2002).

    Google Scholar 

  87. L. G. Lobas, L. D. Patricio, and I. G. Boruk, “Equilibrium of an inverted mathematical double-link pendulum with a follower force,” Int. Appl. Mech., 38, No.3, 372–376 (2002).

    Article  Google Scholar 

  88. Y. Matsuzaki and S. Futura, “Codimension three bifurcation of a double pendulum subjected to a follower force with imperfection,” in: Proc. AIAA Dynamics Specialists Meeting (Long Beach, California, April 5–6, 1990), Washington (1990), pp. 387–394.

  89. S. Otterbein, “Stabilisierung des n-Pendels und der Indische Seiltrick,” Archive for Rational Mechanics and Analysis, 78, No.4, 381–393 (1982).

    Google Scholar 

  90. R. H. Plaut, “A new destabilization phenomenon in nonconservative systems,” Z. Angew. Math. Mech., 51, No.4, 319–321 (1971).

    Google Scholar 

  91. A. Pfluger “Stabilitatsprobleme der Elastostatik,” Springer, Berlin-Gottingen-Heidelberg (1950).

    Google Scholar 

  92. R. Scheidl, H. Troger, and K. Zeman, “Coupled flutter and divergence bifurcation of a double pendulum,” Int. J. Non-Linear Mech., 19, No.2, 163–176 (1983).

    Article  Google Scholar 

  93. V. A. Storozhenko, “A technique for identification of the principal central axis of inertia in an inhomogeneous rigid body,” Int. Appl. Mech., 39, No.12, 1464–1472 (2003).

    Article  Google Scholar 

  94. H. Troger and A. Steindl, Nonlinear Stability and Bifurcation Theory, Springer-Verlag, New York (1991).

    Google Scholar 

  95. H. Ziegler, “Die Stabilitatskriterien der Elastomechanik,” Ing.-Arch., 20, No.1, 49–56 (1952).

    Article  Google Scholar 

  96. H. Ziegler, “Linear elastic stability,” Z. Angew. Math. Phys., 4, No.2, 89–121 (1953).

    Article  Google Scholar 

  97. H. Ziegler, “Linear elastic stability,” Z. Angew. Math. Phys., 4, No.3, 167–185 (1953).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 41, No. 6, pp. 3–35, June 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobas, L.G. Dynamic Behavior of Multilink Pendulums under Follower Forces. Int Appl Mech 41, 587–613 (2005). https://doi.org/10.1007/s10778-005-0128-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-005-0128-y

Keywords

Navigation