Skip to main content

Advertisement

Log in

Pareto design of an adaptive robust hybrid of PID and sliding control for a biped robot via genetic algorithm optimization

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In case of helping elder people and doing complicated jobs, biped robots have greater capabilities in comparison to other mobile robots, such as wheeled robots. However, owing to their extremely nonlinear dynamics and natural instability, their motion planning and control become a more challenging and crucial task. Thus, this paper tends to present an adaptive robust hybrid of PID and sliding control optimized by multi-objective genetic algorithm optimization to control a biped robot walking in the lateral plane on slope. More precisely, proportional, integral, and derivative (PID) control is a reliable and stable controller and sliding mode control (SMC) is a robust controller having an appropriate tracking function. To utilize these unique features of each controller, optimal SMC is employed as a supervisory controller to enhance the performance of optimal adaptive PID control and provide sufficient control input. An adaptation mechanism is used to update the proportional, integral, and derivative gains of PID control online. To eliminate the tedious trial-and-error process of determining the control coefficients, multi-objective genetic algorithm optimization is utilized to design and choose the control parameters by an optimal approach. Three points of the Pareto front of the genetic algorithm optimization are selected to design the controller. While the dynamic equations of the biped robot walking in the lateral plane are immensely nonlinear, the control method can operate effectively and the results demonstrate the proper performance of the controller in two aspects of low tracking error and optimal control input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Liu, Z., Li, Ch.: Fuzzy neural network quadratic stabilization output feedback control for biped robots via H\(\infty \) approach. IEEE Trans. Syst. Man Cybern. Part B Cybern. 33(1), 67–84 (2003)

    Google Scholar 

  2. Liu, Z., Wang, L., Chen, C.L.P., Zeng, X., Zhang, Y., Wang, Y.: Energy-efficiency-based gait control system architecture and algorithm for biped robots. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 926–933 (2012)

    Article  Google Scholar 

  3. Bowling, A.P.: Dynamic performance, mobility, and agility of multilegged robots. J. Dyn. Syst. Meas. Contr. 128(4), 765–777 (2005)

    Article  Google Scholar 

  4. Tlalolini, D., Chevallereau, C., Aoustin, Y.: Human-like walking: optimal motion of a bipedal robot with toe-rotation motion. IEEE/ASME Trans. Mechatron. 16(2), 310–320 (2011)

    Article  Google Scholar 

  5. Phuong, N.T., Won Kim, D., Kyeong Kim, H., Bong Kim, S.: An optimal control method for biped robot with stable walking gait. In: IEEE Proceeding of 8th IEEE-RAS International Conference on Humanoid Robots, Daejeon, Publisher, pp. 211–218 (2008)

  6. Kambayashi, Y., Takimoto, M., Kodama, Y.: Controlling biped walking robots using genetic algorithms in mobile agent environment. In: Proceeding of 3rd International Conference on Computational Cybernetics, pp. 29–34 (2005)

  7. Yin, Y., Hosoe, S.: Mixed logic dynamical modeling and on line optimal control of biped robot. In: Proceeding of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, Publisher: IEEE, pp. 5895–5900 (2006)

  8. Buschmann, T., Favot, V., Schwienbacher, M., Ewald, A., Ulbrich, H.: Dynamics and control of the biped robot lola. In: Multibody System Dynamics, Robotics and Control, pp. 161–173 (2013)

  9. Hyeon Park, J., Chung, S.: Optimal locomotion trajectory for biped robot ‘D2’ with knees stretched, heel-contact landings, and toe-off liftoffs. J. Mech. Sci. Technol. 25(1), 3231–3241 (2011)

    Article  Google Scholar 

  10. Park, S., Han, Y., Hahn, H.: Balance control of a biped robot using camera image of reference object. Int. J. Control Autom. Syst. 7(1), 75–84 (2009)

    Article  Google Scholar 

  11. Zhu, Z., Wang, Y., Chen, X.: Real-time control of full actuated biped robot based on nonlinear model predictive control. Intelligent Robotics and Applications, Lecture Notes in Computer Science, vol. 5314, pp. 873–882 (2008)

  12. Ranga Vundavilli, P., Kumar Pratihar, D.: Near-optimal gait generations of a two-legged robot on rough terrains using soft computing. Robot. Comput. Integr. Manuf. 27(3), 521–530 (2011)

    Article  Google Scholar 

  13. Ranga Vundavilli, P., Kumar Pratihar, D.: Dynamically balanced optimal gaits of a ditch-crossing biped robot. Robot. Auton. Syst. 58(4), 349–361 (2010)

    Article  Google Scholar 

  14. Mozaryn, J., Malinowski, K.: Tuning rules selection and iterative modification of PID control system parameters. In: Mechatronics, pp 677–684 (2014)

  15. Lin-ke, Y., Jian-ming, Z., Qi-long, Y., Ji-ming, X., Yan, L.: Fuzzy PID control for direct drive electro-hydraulic position servo system. In: 2011 International Conference on Consumer Electronics, Communications and Networks, XianNing, Publisher: IEEE, pp. 370–373 (2011)

  16. Wen, Y., Rosen, J.: Neural PID control of robot manipulators with application to an upper limb exoskeleton. IEEE Trans. Cybern. 43(2), 673–684 (2013)

    Article  Google Scholar 

  17. Wang, C., Li, D.: Decentralized PID controllers based on probabilistic robustness. J. Dyn. Syst. Meas. Control 133(6), 061015 (2011)

    Article  Google Scholar 

  18. Huang, Y.-S., Wu, M., He, Y., Yu, L.-L., Zhu, Q.-X.: Decentralized adaptive fuzzy control of large-scale nonaffine nonlinear systems by state and output feedback. Nonlinear Dyn. 69(4), 1665–1677 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lin, C.-M., Li, M.-C., Ting, A.-B., Lin, M.-H.: A robust self-learning PID control system design for nonlinear systems using a particle swarm optimization algorithm. Int. J. Mach. Learn. Cybern. 2(4), 225–234 (2011)

    Article  Google Scholar 

  20. Jahed, M., Farrokhi, M.: Robust adaptive fuzzy control of twin rotor MIMO system. Soft. Comput. 17(10), 1847–1860 (2013)

    Article  Google Scholar 

  21. Sood, V.: Autonomous robot motion control using fuzzy PID controller. In: High Performance Architecture and Grid Computing, Communications in Computer and Information Science vol. 169, pp. 385–390 (2011)

  22. Sato, T.: Predictive control approaches for PID control design and its extension to multirate system. In: PID Control in the Third Millennium, Advances in Industrial Control, pp. 553–595 (2012)

  23. Chen, X., Li, D., Bai, Y., Xu, Z.: Modeling and neuro-fuzzy adaptive attitude control for eight-rotor MAV. Int. J. Control Autom. Syst. 9(6), 1154–1163 (2011)

    Article  Google Scholar 

  24. Ding, F., Jiankang, H., Yu, S., Lihui, L.: Fuzzy PID control of wire extension in pulsed MIG welding for aluminum alloy. In: Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Yantai, Shandong, Publisher: IEEE, pp. 686–690 (2010)

  25. Pan, I., Das, S., Gupta, A.: Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay. ISA Trans. 50(1), 28–36 (2011)

    Article  Google Scholar 

  26. Jan, R.-M., Tseng, C.-S.: Robust PID control design for permanent magnet synchronous motor: a genetic approach. Electr. Power Syst. Res. 78(7), 1161–1168 (2008)

    Article  Google Scholar 

  27. Hsu, C.-F., Chen, G.-M.: Robust intelligent tracking control with PID-type learning algorithm. Neurocomputing 71(1–3), 234–243 (2007)

    Article  Google Scholar 

  28. Wang, S., Wang, Y., Zhang, L.: Time-delay dependent state feedback fuzzy-predictive control of time-delay T-S fuzzy model. In: Fifth International Conference on Fuzzy Systems and Knowledge Discovery, Jinan Shandong, Publisher: IEEE, pp. 129–133 (2008)

  29. Ho, W.-H., Hsu, M.-R., Chou, J.-H.: Design of stable and quadratic optimal linear state feedback controllers for TS-fuzzy-model-based control systems. In: 9th International Conference on Control, Automation, Robotics and Vision, Singapore, Publisher: IEEE, pp. 1–6 (2006)

  30. Allouche, M., Chaabane, M., Souissi, M., Mehdi, D., Tadeo, F.: State feedback tracking control for indirect field-oriented induction motor using fuzzy approach. Int. J. Autom. Comput. 10(2), 99–110 (2013)

    Article  Google Scholar 

  31. Dong, J., Yang, G.-H.: State feedback control of continuous-time T-S fuzzy systems via switched fuzzy controllers. Inf. Sci. 178(6), 1680–1695 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zhou, K., Yu, H.: Application of fuzzy predictive-PID control in temperature control system of freeze-dryer for medicine material. In: Second International Conference on Mechanic Automation and Control Engineering (MACE), Hohhot, Publisher: IEEE, pp. 7200–7203 (2011)

  33. Iancu, M., Cristea, M.V., Agachi, P.S.: MPC vs. PID. The advanced control solution for an industrial heat integrated fluid catalytic cracking plant. Comput. Aided Chem. Eng. 29, 517–521 (2011)

    Article  Google Scholar 

  34. Li, Z.: Support vector machine model based predictive pid control system for cement rotary kiln, Chinese Control and Decision Conference (CCDC), Xuzhou, Publisher: IEEE, pp. 3117–3121 (2010)

  35. Singh, R., Ierapetritou, M., Ramachandran, R.: System-wide hybrid MPC-PID control of a continuous pharmaceutical tablet manufacturing process via direct compaction. Eur. J. Pharm. Biopharm. 85(3), 1164–1182 (2013)

  36. Cerman, O., Husek, P.: Adaptive fuzzy sliding mode control for electro-hydraulic servo mechanism. Expert Syst. Appl. 39(11), 10269–10277 (2012)

    Article  Google Scholar 

  37. Nekoukar, V., Erfanian, A.: Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems. Fuzzy Sets Syst. 179(1), 34–49 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  38. Nekoukar, V., Erfanian, A.: A decentralized modular control framework for robust control of FES-activated walker-assisted paraplegic walking using terminal sliding mode and fuzzy logic control. IEEE Trans. Biomed. Eng. 59(10), 2818–2827 (2012)

    Article  Google Scholar 

  39. Asadi, A.-R., Erfanian, A.: Adaptive neuro-fuzzy sliding mode control of multi-Joint movement using intraspinal microstimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 20(4), 499–509 (2012)

    Article  Google Scholar 

  40. Hwang, C-L., Wu, H-M.: Hybrid fuzzy sliding-mode under-actuated control for trajectory tracking of mobile robot in the presence of friction and uncertainty. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Brisbane, QLD, Publisher: IEEE, pp. 1–8 (2012)

  41. Li, H., Ye, X.: Sliding-mode PID control of DC-DC converter. In: 5th IEEE Conference on Industrial Electronics and Applications (ICIEA), Taichung, Publisher: IEEE, 730–734 (2010)

  42. Li, Y., Xu, Q.: Adaptive sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator. IEEE Trans. Control Syst. Technol. 18(4), 798–810 (2010)

    Article  Google Scholar 

  43. Jafarov, E.M., Parlakci, M.N.A., Istefanopulos, Y.: A new variable structure PID-controller design for robot manipulators. IEEE Trans. Control Syst. Technol. 13(1), 122–130 (2005)

    Article  Google Scholar 

  44. Eker, I.: Second-order sliding mode control with experimental application. ISA Trans. 49(3), 394–405 (2010)

    Article  Google Scholar 

  45. Aliakbari, S., Ayati, M., Osman, J.H.S., Md Sam, Y.: Second-order sliding mode fault-tolerant control of heat recovery steam generator boiler in combined cycle power plants. Appl. Therm. Eng. 50(1), 1326–1338 (2013)

    Article  Google Scholar 

  46. Zhang, D.L., Chen, Y.P., Xie, J.M., Ai, W., Yuan, C.M.: A hybrid control method of sliding mode and PID controllers based on adaptive controlled switching portion. In: 29th Chinese Control Conference (CCC), pp. 439–445. Beijing, Publisher, IEEE (2010)

  47. Li, Y., Wang, Z., Zhu, L.: Adaptive neural network PID sliding mode dynamic control of nonholonomic mobile robot. In: IEEE International Conference on Information and Automation (ICIA), Publisher: IEEE, pp. 753–757 (2010)

  48. Zhang, Y., Li, P., Wu, W.-J.: Single neuron PID sliding mode parallel compound control for alternating current servo system. Procedia Eng. 29, 2055–2061 (2012)

    Article  MathSciNet  Google Scholar 

  49. Ge, S.S., Zhijun, L., Huayong, Y.: Data driven adaptive predictive control for holonomic constrained under-actuated biped robots. IEEE Trans. Control Syst. Technol. 20(3), 787–795 (2012)

    Article  Google Scholar 

  50. Zhijun, L., Ge, S.S.: Adaptive robust controls of biped robots. IET Control Theory Appl. 7(2), 161–175 (2013)

    Article  MathSciNet  Google Scholar 

  51. Wang, F., Wen, S., Wu, C., Cheng, Z.: Sliding mode control based hybrid closed-loop design for stable walking of biped robot with heterogeneous legs. In: Proceeding of International Conference on Mechatronics and Automation (ICMA), Beijing, Publisher: IEEE, pp. 2201–2205 (2011)

  52. Pournazhdi, A.B., Mirzaei, M., Ghiasi, A.R.: Dynamic modeling and sliding mode control for fast walking of seven-link biped robot. In: Proceeding of International Conference on Control, Instrumentation and Automation (ICCIA), Shiraz, Publisher: IEEE, pp. 1012–1017 (2011)

  53. Kantawong, S.: Development of RFID dressing robot using DC servo motor with fuzzy-PID control system. In: Proceeding of 13th International Symposium on Communications and Information Technologies (ISCIT), Surat Thani, Publisher: IEEE, pp. 14–19 (2013)

  54. Wu, H.-M., Hwang, C.-L.: Trajectory-based control under ZMP constraint for the 3D biped walking via fuzzy control. In: IEEE International Conference on Fuzzy Systems (FUZZ), Taipei, Publisher: IEEE, pp. 706–712 (2011)

  55. Sentis, L., Park, J., Khatib, O.: Compliant control of multicontact and center-of-mass behaviors in humanoid robots. IEEE Trans. Robot. 26(3), 483–501 (2010)

    Article  Google Scholar 

  56. Li, Q., Lihuan, L.,Fucai, L., Zhenlin, J.: The application of adaptive backstepping sliding mode for hybrid humanoid robot arm trajectory tracking control. In: Proceeding of International Conference on Advanced Mechatronic Systems (ICAMechS), Luoyang, Publisher: IEEE, pp. 730–735 (2013)

  57. Liu, L., Jiang, H., Li, J., Tian, Y., Yang, M.: Adaptive excitation control for the underactuated biped robot. Energy Procedia 17, 1667–1674 (2012)

    Article  Google Scholar 

  58. Heo, J.S., Lee, K.Y., Garduno-Ramirez, R.: Multiobjective control of power plants using particle swarm optimization techniques. IEEE Trans. Energy Convers. 21(2), 552–561 (2006)

    Article  Google Scholar 

  59. Khoukhi, A., Al-Sunni, F.M., Khalid, H.M., Rizvi, S.Z.: Non-linear constrained optimal control problem: a hybrid PSO-GA-Based discrete augmented lagrangian approach. In: Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), El Paso, TX, pp. 1–6 (2011)

  60. Chiou, J.-S., Tsai, S.-H., Liu, M.-T.: A PSO-based adaptive fuzzy PID-controllers. Simul. Model. Pract. Theory 26, 49–59 (2012)

    Article  Google Scholar 

  61. Rahim, M.A., Khalid, H.M., Khoukhi, A.: Nonlinear constrained optimal control problem: a PSO-GA-based discrete augmented Lagrangian approach. Int. J. Adv. Manuf. Technol. 62(1–4), 183–203 (2012)

    Article  Google Scholar 

  62. Castillo, O.: A hybrid PSO-GA optimization method to design type-1 and type-2 fuzzy logic controllers. In: Type-2 Fuzzy Logic in Intelligent Control Applications, Studies in Fuzziness and Soft Computing, vol. 272, pp. 105–118 (2012)

  63. Soltanpour, M.R., Khooban, M.H.: A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator. Nonlinear Dyn. 74(1–2), 467–478 (2013)

  64. Castillo-Villar, K.K., Smith, N.R., Herbert-Acero, J.F.: Design and optimization of capacitated supply chain networks including quality measures. Math. Probl. Eng. 2014, 17 (2014). doi:10.1155/2014/218913

  65. Arumugam, M.S., Chandramohan, A., Murthy, G.R.: On the optimal control of steel annealing processes via various versions of genetic and particle swarm optimization algorithms. Optim. Eng. 12(3), 371–392 (2011)

    Article  MATH  Google Scholar 

  66. Castillo-Villar, K.K., Smith, N.R., Simonton, J.L.: The impact of the cost of quality on serial supply-chain network design. Int. J. Prod. Res. 50(19), 5544–5566 (2012)

    Article  Google Scholar 

  67. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  68. Chang, P.-C., Huang, W.-H., Ting, C.-J.: Dynamic diversity control in genetic algorithm for mining unsearched solution space in TSP problems. Expert Syst. Appl. 37(3), 1863–1878 (2010)

    Article  Google Scholar 

  69. Hsieh, C.-H., Chou, J.-H.: Design of optimal PID controllers for PWM feedback systems with bilinear plants. IEEE Trans. Control Syst. Technol. 15(6), 1075–1079 (2007)

    Article  Google Scholar 

  70. Hultmann Ayala, H.V., Santos Coelho, Ld: Tuning of PID controller based on a multiobjective genetic algorithm applied to a robotic manipulator. Expert Syst. Appl. 39(10), 8968–8974 (2012)

    Article  Google Scholar 

  71. Carmona Morales, D., Jimenez-Hornero, J.E., Vazquez, F., Morilla, F.: Educational tool for optimal controller tuning using evolutionary strategies. IEEE Trans. Educ. 55(1), 48–57 (2012)

    Article  Google Scholar 

  72. Chen, Y., Wu, Q.: Design and implementation of PID controller based on FPGA and genetic algorithm. In: International Conference on Electronics and Optoelectronics (ICEOE), Dalian, Publisher: IEEE, pp. 308–311 (2011)

  73. Cetin, S., Volkan Akkaya, A.: Simulation and hybrid fuzzy-PID control for positioning of a hydraulic system. Nonlinear Dyn. 61(3), 465–476 (2010)

    Article  MATH  Google Scholar 

  74. Das, S., Pan, I., Das, S., Gupta, A.: Master-slave chaos synchronization via optimal fractional order PID controller with bacterial foraging algorithm. Nonlinear Dyn. 69(4), 2193–2206 (2012)

    Article  MathSciNet  Google Scholar 

  75. Liu, X., Liu, H., Tang, Y., Gao, Q.: Fuzzy PID control of epileptiform spikes in a neural mass model. Nonlinear Dyn. 71(1–2), 13–23 (2013)

  76. Mahmoodabadi, M.J., Taherkhorsandi, M., Bagheri, A.: Optimal robust sliding mode tracking control of a biped robot based on ingenious multi-objective PSO. Neurocomputing 124, 194–209 (2014)

    Article  Google Scholar 

  77. Andalib Sahnehsaraei, A., Mahmoodabadi, M.J., Taherkhorsandi, M.: Optimal robust decoupled sliding mode control based on a multi-objective genetic algorithm. In: Proceeding of International Symposium on Innovations in Intelligent Systems and Application, Albena, Bulgaria, Publisher: IEEE, pp. 1–5 (2013)

  78. Alitavoli, M., Taherkhorsandi, M., Mahmoodabadi, M.J., Bagheri, A., Miripour-Fard, B.: Pareto design of sliding-mode tracking control of a biped robot with aid of an innovative particle swarm optimization. In: Proceeding of International Symposium on Innovations in Intelligent Systems and Application, Trabzon, Turkey, Publisher, IEEE, pp. 1–5 (2012)

  79. Mahmoodabadi, M.J., Taherkhorsandi, M., Bagheri, A.: Pareto design of state feedback tracking control of a biped robot via multiobjective PSO in comparison with Sigma method and genetic algorithms: modified NSGAII and MATLAB’s toolbox. Sci World J vol. 2014, Article ID 303101, 2014. doi:10.1155/2014/303101

  80. Taherkhorsandi, M., Miripour-Fard, B., Bagheri, A.: Optimal tracking control of a biped robot walking in the lateral plane. In: Proceeding of International Symposium on Innovations in Intelligent Systems and Application, Istanbul, Turkey, Publisher, IEEE, pp. 560–564 (2011)

  81. Ang, K.H., Chong, G.C.Y., Li, Y.: PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 13(4), 559–576 (2005)

    Article  Google Scholar 

  82. Li, Y., Feng, W., Tan, K. C., Zhu, X. K., Guan, X., Ang, K. H.: PID easy and automated generation of optimal PID controllers. In: Proceeding of 3rd Asia- Pacific Conf. Control and Measurement, Dunhuang, P.R. China, pp. 29–33 (1998)

  83. Quevedo, J., Escobet, T.: Digital control: past, present and future of PID control. In: Proceeding of International Federation of Automatic Control, Terrassa, Spain, Apr. 5–7 (2000)

  84. Zinober, A.S.I.: Deterministic Control of Uncertain Systems. Peter Peregrinus Press (1990). ISBN:978-0-86341-170-0

  85. Slotine, J.-J., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliff (1991)

    MATH  Google Scholar 

  86. Jing, J., Wuan, Q.H.: Intelligent sliding mode control algorithm for position tracking servo system. Int. J. Inf. Technol. 12(7), 57–62 (2006)

    Google Scholar 

  87. Ng, K.C., Li, Y., Munay-Smith, D., Shaman, K.C.: Genetic algorithm applied to fuzzy sliding mode controller design. In: Proceedings of Genetic Algorithms in Engineering Systems, Innovations and Applications 12–14, Conference Publication No. 414, IEE, pp. 220–225 (1995)

  88. Chang, W.-D., Yan, J.-J.: Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems. Chaos Solitons Fractals 26, 167–175 (2005)

    Article  MATH  Google Scholar 

  89. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable suggestions that enhance the technical and scientific quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Taherkhorsandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taherkhorsandi, M., Mahmoodabadi, M.J., Talebipour, M. et al. Pareto design of an adaptive robust hybrid of PID and sliding control for a biped robot via genetic algorithm optimization. Nonlinear Dyn 79, 251–263 (2015). https://doi.org/10.1007/s11071-014-1661-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1661-1

Keywords

Navigation