Skip to main content

Sliding Mode Control with PID Surface for Robot Manipulator Optimized by Evolutionary Algorithms

  • Conference paper
  • First Online:
Recent Advances in Engineering Mathematics and Physics

Abstract

In this study, sliding mode controller (SMC) with PID surface is designed for the trajectory tracking control of robot manipulator using antlion optimization algorithm (ALO) compared with another technique called gray wolf optimizer (GWO). The idea is to determine optimal parameters (Kp, Ki, Kd, and lamda) ensuring best performance of robot manipulator system minimizing the integral time absolute error (ITAE) criterion or the integral time square error (ISTE) criterion; the modeling and the control of the robot manipulator were realized in MATLAB environment. The simulation results prove the superiority of ALO in comparison with GWO algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adhikary, N., & Mahanta, C. (2018). Sliding mode control of position commanded robot manipulators. Control Engineering Practice, 81, 183–198.

    Article  Google Scholar 

  2. Jung, S. (2018). Improvement of tracking control of a sliding mode controller for robot manipulators by a neural network. International Journal of Control, Automation and Systems, 16(2), 937–943.

    Article  Google Scholar 

  3. Yoo, D. (2009). A comparison of sliding mode and integral sliding mode controls for robot manipulators. Transactions of the Korean Institute of Electrical Engineers, 58(1), 168–172.

    Google Scholar 

  4. Liu, R., & Li, S. (2014). Optimal integral sliding mode control scheme based on pseudo spectral method for robotic manipulators. International Journal of Control, 87(6), 1131–1140.

    Article  ADS  MathSciNet  Google Scholar 

  5. Zhao, Y., Sheng, Y., & Liu, X. (2014). A novel finite time sliding mode control for robotic manipulators. IFAC Proceedings, 47, 7336–7341.

    Article  Google Scholar 

  6. Azlan, N. Z., & Osman, J. H. S. (2006). Proportional integral sliding mode control of hydraulic robot manipulators with chattering elimination. In: First International Conference on Industrial and Information Systems, Sri Lanka.

    Google Scholar 

  7. Das, M., & Mahanta, C. (2014). Optimal second order sliding mode control for nonlinear uncertain systems. ISA Transactions, 53, 1191–1198.

    Article  Google Scholar 

  8. Adelhedi, F., Jribi, A., Bouteraa, Y., & Derbe, N. (2015). Adaptive sliding mode control design of a SCARA robot manipulator system under parametric variations. Journal of Engineering Science and Technology Review, 8(5), 117–123.

    Article  Google Scholar 

  9. Jiang, S., Zhao, J., Xie, F., Fu, J., Wang, X., & Li, Z. (2008). A novel adaptive sliding mode control for manipulator with external disturbance. In: 37th Chinese Control Conference (CCC).

    Google Scholar 

  10. Yi, S., & Zhai, J. (2019). Adaptive second-order fast nonsingular terminal sliding mode control for robotic manipulators. ISA Transactions, 90, 41–51.

    Article  Google Scholar 

  11. Jing, C., Xu, H., & Niu, X. (2019). Adaptive sliding mode disturbance rejection control with prescribed performance for robotic manipulators. ISA Transactions, 91, 41–51.

    Article  Google Scholar 

  12. Mirshekaran, M., Piltan, F., Esmaeili, Z., Khajeaian, T., & Kazeminasab, M. (2013). Design sliding mode modified fuzzy linear controller with application to flexible robot manipulator. International Journal of Modern Education and Computer Science, 10, 53–63.

    Article  Google Scholar 

  13. Tran, M.D., & Kang, H.J. (2015). Adaptive fuzzy PID sliding mode controller of uncertain robotic manipulator. In: International Conference on Intelligent Computing: Intelligent Computing Theories and Methodologies, ICIC, pp. 92–103.

    Google Scholar 

  14. Ataei, M., & Shafiei, S. E. (2008). Sliding mode PID-controller design for robot manipulators by using fuzzy tuning approach. In: 27th Chinese Control Conference.

    Google Scholar 

  15. Nejatbakhsh Esfahani, H., & Azimirad, V. (2013). A new fuzzy sliding mode controller with PID sliding surface for underwater manipulators. International Journal of Mechatronics, Electrical and Computer Technology, 3(9), 224–249.

    Google Scholar 

  16. Kharabian, B., Bolandi, H., Ehyaei, A. F., Mousavi Mashhadi, S. K., & Smailzadeh, S. M. (2017). Adaptive tuning of sliding mode-PID control in free floating space manipulator by sliding cloud theory. American Journal of Mechanical and Industrial Engineering, 2(2), 64–71.

    Article  Google Scholar 

  17. Vijay, M., & Jena, D. (2018). PSO based backstepping sliding mode controller and observer for robot manipulators. In: International Conference on Power, Instrumentation, Control and Computing (PICC).

    Google Scholar 

  18. Vijay, M., & Jena, D. (2017). PSO based neuro fuzzy sliding mode control for a robot manipulator. Journal of Electrical Systems and Information Technology, 4(1), 243–256.

    Article  Google Scholar 

  19. Mokeddem, D., & Draidi, H. (2018). Optimization of PID sliding surface using Antlion optimizer. International Symposium on Modelling and Implementation of Complex Systems MISC, pp. 133–145.

    Google Scholar 

  20. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Article  Google Scholar 

  21. Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80–98.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatiha Loucif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loucif, F., Kechida, S. (2020). Sliding Mode Control with PID Surface for Robot Manipulator Optimized by Evolutionary Algorithms. In: Farouk, M., Hassanein, M. (eds) Recent Advances in Engineering Mathematics and Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-39847-7_2

Download citation

Publish with us

Policies and ethics