Skip to main content

Advertisement

Log in

Effects of seismic force and pore water pressure on stability of 3D unsaturated hillslopes

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) kinematic limit analysis of unsaturated hillslopes is presented in this paper. Different from the traditional two-dimensional (2D) mechanism based on the infinite slope model, the 3D failure mechanism is more rational for its advantage in taking the out-of-plane geometries and soil properties into consideration. The soils in engineering practice are mostly unsaturated in nature and are commonly characterized with an arbitrary distribution of the moisture content, i.e., the matric suction, and therefore the formation of the work balance equation becomes much more elaborated using traditional methods. To tackle the nonlinear features of matric suction, a semi-analytical method is presented and is validated through comparisons with the benchmark solutions. The hillslope stability under seismic and pore water pressure conditions are both numerically studied. The results are presented in forms of graphs for a practical range of parameters, indicating the significance in accounting for the influences of 3D constraints, seismic loads and pore water pressures in hillslope stability assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

Download references

Acknowledgements

This study was performed under the financial supports from the National Key R&D Program of China (Grant No. 2018YFC1505105), National Natural Science Foundation of China (Nos. 11672172 and 51709129), the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironmental Protection (Chengdu University of Technology) (Grant No. SKLGP2018K023) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170187). All financial supports are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Details about the ILSM

The work rates provided by soil gravity and seismic forces in saturated zone are given as follows:

$$\begin{gathered} W_{{\gamma_{{{\text{sat}}}} }}^{{}} + W_{{\text{s}}}^{{}} = \frac{1}{4}br_{0}^{3} \omega \gamma_{{{\text{sat}}}} \int_{{\theta_{C} }}^{{\theta_{{C^{\prime}}} }} {\left( {\cos \theta + k_{{{\text{hE}}}} \sin \theta } \right)} \\ \times \left\{ {\exp \left[ {\left( {\theta - \theta_{0} } \right)\tan \phi^{\prime}} \right] + \frac{{\sin \left( {\theta_{0} + \beta } \right)}}{{\sin \left( {\theta + \beta } \right)}}} \right\}^{2} \left\{ {\exp \left[ {\left( {\theta - \theta_{0} } \right)\tan \phi^{\prime}} \right] - \frac{{\sin \left( {\theta_{0} + \beta } \right)}}{{\sin \left( {\theta + \beta } \right)}}} \right\}d\theta \\ + 2\omega \gamma_{{{\text{sat}}}} \int_{{\theta_{C} }}^{{\theta_{{C^{\prime}}} }} {\int_{0}^{{\sqrt {R^{2} - a^{2} } }} {\int_{a}^{{\sqrt {R^{2} - x^{2} } }} {\left( {\cos \theta + k_{{{\text{hE}}}} \sin \theta } \right)\left( {r_{{\text{m}}} + y} \right)^{2} dydx} } d\theta } \\ \end{gathered}$$
(27)

The variables θC, θC′, R, a and rm are given as follows:

$$\left( {r_{0} \exp \left[ {\left( {\theta_{C} - \theta_{0} } \right)\tan \phi^{\prime}} \right]\sin \theta_{C} - r_{0} \sin \theta_{0} } \right) - \left( {r_{0} \cos \theta_{0} - r_{0} \exp \left[ {\left( {\theta_{C} - \theta_{0} } \right)\tan \phi^{\prime}} \right]\cos \theta_{C} } \right)\tan \beta = H$$
(28)
$$\frac{{\exp \left[ {\left( {\theta_{{C^{\prime}}} - \theta_{0} } \right)\tan \phi^{\prime}} \right]\sin \theta_{{C^{\prime}}} - \exp \left[ {\left( {\theta_{C} - \theta_{0} } \right)\tan \phi^{\prime}} \right]\sin \theta_{C} }}{{\exp \left[ {\left( {\theta_{C} - \theta_{0} } \right)\tan \phi^{\prime}} \right]\cos \theta_{C} - \exp \left[ {\left( {\theta_{{C^{\prime}}} - \theta_{0} } \right)\tan \phi^{\prime}} \right]\cos \theta_{{C^{\prime}}} }} = \tan \beta$$
(29)
$$R = \frac{1}{2}\left( {r - r^{\prime}} \right)$$
(30)
$$r_{m} = \frac{1}{2}\left( {r + r^{\prime}} \right)$$
(31)
$$a = \frac{{r_{0} \sin \left( {\theta_{0} + \beta } \right)}}{{\sin \left( {\theta + \beta } \right)}} - r_{m}$$
(32)

For cohesive and frictional soils, the expression of \(D_{{c^{\prime } }}^{3D}\) is

$$D_{{c^{\prime}}}^{{}} = - \frac{{2c^{\prime}\omega r_{0}^{2} \sin^{2} \left( {\theta_{0} + \beta } \right)}}{{\tan \phi^{\prime}}}\int_{{\theta_{0} }}^{{\theta_{h} }} {\frac{{\cos \left( {\theta + \beta } \right)}}{{\sin^{3} \left( {\theta + \beta } \right)}}\left( {\sqrt {R^{2} - a^{2} } + b} \right)d\theta }$$
(33)

For purely cohesive soils, the expression of \(D_{{c^{\prime } }}\) is given as

$$D_{{c^{\prime}}}^{{}} = 2\omega c^{\prime}R\int_{{\theta_{0} }}^{{\theta_{h} }} {\int_{a}^{R} {\left( {r_{m} + y} \right)^{2} dyd\theta } } + \frac{{bc^{\prime}\omega r_{0}^{2} }}{{2\tan \phi^{\prime}}}\left( {\exp \left[ {2\left( {\theta_{h} - \theta_{0} } \right)\tan \phi^{\prime}} \right] - 1} \right)$$
(34)

The variables θj, θj, θj-1, θj-1′ and aj in Fig. 5 can be found from the geometrical relation as

$$\left\{ {r_{0} \exp \left[ {\left( {\theta_{j} - \theta_{0} } \right)\tan \phi^{\prime}} \right]\sin \theta_{j} - r_{0} \sin \theta_{0} } \right\} - \left\{ {r_{0} \cos \theta_{0} - r_{0} \exp \left[ {\left( {\theta_{j} - \theta_{0} } \right)\tan \phi^{\prime}} \right]\cos \theta_{j} } \right\}\tan \beta = \left( {m - j} \right)h$$
(35)
$$\frac{{\exp \left[ {\left( {\theta_{{j^{\prime}}} - \theta_{0} } \right)\tan \phi^{\prime}} \right]\sin \theta_{{j^{\prime}}} - \exp \left[ {\left( {\theta_{j} - \theta_{0} } \right)\tan \phi^{\prime}} \right]\sin \theta_{j} }}{{\exp \left[ {\left( {\theta_{j} - \theta_{0} } \right)\tan \phi^{\prime}} \right]\cos \theta_{j} - \exp \left[ {\left( {\theta_{{j^{\prime}}} - \theta_{0} } \right)\tan \phi^{\prime}} \right]\cos \theta_{{j^{\prime}}} }} = \tan \beta$$
(36)
$$\begin{gathered} \left\{ {r_{0} \exp \left[ {\left( {\theta_{j - 1} - \theta_{0} } \right)\tan \phi^{\prime}} \right]\sin \theta_{j - 1} - r_{0} \sin \theta_{0} } \right\} \hfill \\ - \left\{ {r_{0} \cos \theta_{0} - r_{0} \exp \left[ {\left( {\theta_{j - 1} - \theta_{0} } \right)\tan \phi^{\prime}} \right]\cos \theta_{j - 1} } \right\}\tan \beta = \left[ {m - \left( {j - 1} \right)} \right]h \hfill \\ \end{gathered}$$
(37)
$$\frac{{\exp \left[ {\left( {\theta_{{j - 1^{\prime}}} - \theta_{0} } \right)\tan \phi^{\prime}} \right]\sin \theta_{{j - 1^{\prime}}} - \exp \left[ {\left( {\theta_{j - 1} - \theta_{0} } \right)\tan \phi^{\prime}} \right]\sin \theta_{j - 1} }}{{\exp \left[ {\left( {\theta_{j - 1} - \theta_{0} } \right)\tan \phi^{\prime}} \right]\cos \theta_{j - 1} - \exp \left[ {\left( {\theta_{{j - 1^{\prime}}} - \theta_{0} } \right)\tan \phi^{\prime}} \right]\cos \theta_{{j - 1^{\prime}}} }} = \tan \beta$$
(38)
$$a_{j} = \frac{{r_{0} \sin \left( {\theta_{0} + \beta } \right) + \left( {m - j} \right)h\cos \beta }}{{\sin \left( {\theta + \beta } \right)}} - r_{m}$$
(39)

The variable z1 in Eq. (21) is written as

$$z_{1} = H - r_{0} \left\{ {\frac{{\exp \left[ {\left( {\theta - \theta_{0} } \right)\tan \phi^{\prime}} \right]\sin \left( {\theta + \beta } \right) - \sin \left( {\theta_{0} + \beta } \right)}}{\cos \beta }} \right\}$$
(40)

Appendix 2: Details about the ILSM with the spherical cap failure mechanism

The volume of each subsoil layer is

$$V_{j} = 0.5\left( {S_{j} + S_{j - 1} } \right)h$$
(41)

where Sj and Sj-1 are the areas of upper and bottom surfaces of subsoil layer j, respectively; and h is the thickness of each subsoil layer. The expressions of Sj, Sj-1 and h can be expressed as

$$S_{j} = \pi r_{j}^{2} = \pi R^{{\prime}{2}} \cos^{2} \left( {\beta + \theta_{j} } \right)$$
(42)
$$S_{j - 1} = \pi r_{j - 1}^{2} = \pi R^{{\prime}{2}} \cos^{2} \left( {\beta + \theta_{j - 1} } \right)$$
(43)
$$h = \frac{{R^{\prime} - R^{\prime}\cos \delta }}{m}$$
(44)

where θj and θj-1 are angles shown in Fig. 14 and can be found from the following trigonometric relation:

$$\left[ {\sin \theta_{j} - \cos \left( {\delta + \beta } \right)} \right] - \left[ {\sin \left( {\delta + \beta } \right) - \cos \theta_{j} } \right]\tan \beta = \frac{{\left( {m - j} \right)\left( {1 - \cos \delta } \right)}}{m\cos \beta }$$
(45)
$$\left[ {\sin \theta_{j - 1} - \cos \left( {\delta + \beta } \right)} \right] - \left[ {\sin \left( {\delta + \beta } \right) - \cos \theta_{j - 1} } \right]\tan \beta = \frac{{\left( {m + 1 - j} \right)\left( {1 - \cos \delta } \right)}}{m\cos \beta }$$
(46)
$$l_{c} = R^{\prime}\cos \delta + 0.5h\left( {2m - 2j + 1} \right)$$
(47)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liu, W., Hu, W. et al. Effects of seismic force and pore water pressure on stability of 3D unsaturated hillslopes. Nat Hazards 105, 2093–2116 (2021). https://doi.org/10.1007/s11069-020-04391-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-020-04391-0

Keywords

Navigation