Skip to main content
Log in

Identification of pre-seismic anomalies of soil radon-222 signal using Hilbert–Huang transform

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Concentration of Rn-222 in soil has been monitored continuously at Ravangla in the Sikkim Himalayan Region of eastern India for about 7 months from October 2015 to May 2016 to detect earthquake-induced anomalies. The recorded data clearly show that various physical and meteorological parameters influence the soil radon concentration, leading to very complex soil Rn-222 time series. The components due to such external influences have been removed from the present time series, and Hilbert–Huang transform (HHT) applied for analysis of the data. Two radon anomalies caused due to earthquakes of magnitude M b = 5.0 that occurred on 19 November 2015 and 5 April 2016 within an epicentral distance of 500 km from the monitoring station have been identified on the soil Rn-222 time series. These two precursory anomalies occurred 9 and 10 days, respectively, before the occurrence of the earthquakes. The absence of spurious signals or missing anomalies demonstrates that HHT is advantageous for analysis of nonlinear non-stationary data, and hence, it is a promising technique to analyse soil radon behaviour for predicting the possibility of occurrence of earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Acharyya SK (1994) The Cenozoic foreland basin and tectonics of the Eastern Sub Himalaya: problems and prospects. Himal Geol 15:3–21

    Google Scholar 

  • Barman C, Ghose D, Sinha B, Deb A (2016) Detection of earthquake induced radon precursors by Hilbert Huang Transform. J Appl Geophys 133:123–131

    Article  Google Scholar 

  • Baykut S, Akgul T, Inan S, Seyis C (2010) Observation and removal of daily quasi-periodic components in soil radon data. Radiat Meas 45(4):872–879

    Article  Google Scholar 

  • Bendat JS, Piersol AG (1986) Random data: analysis and measurement procedures, 2nd edn. Wiley, New York

    Google Scholar 

  • Bhattacharyya K, Mitra G (2009) A new kinematic evolutionary model for the growth of a duplex- an example from the Rangit duplex, Sikkim Himalaya, India. Gondwana Res 16:697–715

    Article  Google Scholar 

  • Boashash B (1992) Estimating and interpreting the instantaneous frequency of a signal—Part 2: Algorithms and applications. Proc IEEE 80(4):540–568

    Article  Google Scholar 

  • Brady BT (1974) Theory of earthquakes. Pure Appl Geophys PAGEOPH 112(4):701–725

    Article  Google Scholar 

  • Chaudhuri H, Bari W, Iqbal N, Bhandari RK, Ghose D, Sen P, Sinha B (2011) Long range gas geochemical anomalies of a remote earthquake recorded simultaneously at distant monitoring stations in India on the multi- parametric and multi- station geochemical signatures for the earthquake prediction. Geochem J 45:137–156

    Article  Google Scholar 

  • Chaudhuri H, Ghose D, Bhandari RK, Sen P, Sinha B (2012) A geochemical approach to earthquake reconnaissance at the Baratang mud volcano, Andaman and Nicobar Islands. J Asian Earth Sci 46:52–60

    Article  Google Scholar 

  • Chaudhuri H, Barman C, Iyenger ANS, Ghose D, Sen P, Sinha B (2013) Network of seismo-geochemical monitoring observatories for earthquake prediction research in India. Acta Geophys 61(4):1000–1025

    Article  Google Scholar 

  • Cicerone RD, Ebel JE, Britton J (2009) A systematic compilation of earthquake precursors. Tectonophysics 476:371–396

    Article  Google Scholar 

  • Clements WE (1974) The effect of atmospheric pressure variation on transport of 222Rn from soil to the atmosphere. PhD dissertation, N.M. Inst. of Min. and Technol., Socorro

  • Crockett RGM, Perrier F, Richon P (2010) Spectral decomposition techniques for the identification of periodic and anomalous phenomena in radon time-series. Nat Hazards Earth Syst Sci 10:559–564

    Article  Google Scholar 

  • Das NK, Chaudhuri H, Bhandari RK, Ghose D, Sen P, Sinha B (2006) Continuous monitoring of 222Rn and its progeny at a remote station for seismic hazard surveillance. Radiat Meas 41:634–637

    Article  Google Scholar 

  • Echeverria JC, Crowe JA, Woolfson MS, Hayes-Gill BR (2001) Application of empirical mode decomposition to heart rate variability analysis. Med Biol Eng Comput 39(4):471–479

    Article  Google Scholar 

  • Ergintav S, Reilinger RE, Çakmak R, FloydM Cakir Z, Doğan U, King RW, McClusky S, Özener H (2014) Istanbul’s earthquake hot spots: Geodetic constraints on strain accumulation along faults in the Marmara seismic gap. Geophys Res Lett 41(16):5783–5788

    Article  Google Scholar 

  • Fleischer RL (1981) Dislocation model for radon response to distant earthquakes. Geophys Res Lett 8(5):477–480

    Article  Google Scholar 

  • Fleisher RL, Mogro-Campero A (1978) Mapping of integrated radon emanation for detection of long-distance migration of gases within the earth: techniques and principles. J Geophys Res 83(B7):3539–3549

    Article  Google Scholar 

  • Fleischer RL, Mogro-Campero A (1985) Association of subsurface radon changes in Alaska and the north eastern United States with earthquakes. Geochim Cosmochim Acta 49(4):1061–1071

    Article  Google Scholar 

  • Freund F, Stoic V (2013) Nature of pre-earthquake phenomena and their effects on living organisms. Anim (Basel) 3(2):513–531

    Google Scholar 

  • Fujiyoshi R, Sakamoto K, Imanishi T, Sumiyoshi T, Sawamura S, Vaupotic J, Kobal I (2006) Meteorological parameters contributing to variability in Rn-222 activity concentrations in soil gas at a site in Sapporo, Japan. Sci Total Environ 370:224–234

    Article  Google Scholar 

  • Gansser A (1964) Geology of the Himalayas. Interscience, Wiley, pp 1–289

    Google Scholar 

  • Georgy C, Rafael Z, Ivan B (2015) Radon monitoring in groundwater and soil gas of Sakhalin Island. J Geosci Environ Protect 3:48–53

    Article  Google Scholar 

  • Ghosh D, Deb A, Sengupta R (2009) Anomalous radon emission as precursor of earthquake. J Appl Geophys 69(2):67–81

    Article  Google Scholar 

  • Grant RA, Halliday T, Balderer W, Leuenberger F, Newcomer M, Cyr G, Freund F (2011) Ground water chemistry changes before major earthquakes and possible effects on animals. Int J Environ Res Public Health 8(6):1936–1956

    Article  Google Scholar 

  • Hartmann J (2005) Difference information criterion for the analysis of a seismotectonic influence on a radon time-series at the KSM site, Japan. Geophys J Int 160(3):891–900

    Article  Google Scholar 

  • Hartmann J, Levy JK (2005) Hydrogeological and gasgeochemical earthquake precursors—a review for application. Nat Hazards 34:279–304

    Article  Google Scholar 

  • Hauksson E (1981) Radon content of groundwater as an earthquake precursor: evaluation of worldwide data and physical basis. J Geophys Res Solid Earth 86(B10):9397–9410

    Article  Google Scholar 

  • Holford DJ, Schery SD, Wilson JL, Phillips FM (1993) Modeling radon transport in dry, cracked soil. J Geophys Res Solid Earth 98(B1):567–580

    Article  Google Scholar 

  • Huang NE, Shen Z, Long SR, Wu CM, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH (1998a) The empirical mode decomposition and the spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A 454:903–995

    Article  Google Scholar 

  • Huang W, Shen Z, Huang NE, Fung YC (1998b) Engineering analysis of biological variables: An example of blood pressure over 1 day. Proc Natl Acad Sci USA 95:4816–4821

    Article  Google Scholar 

  • Jánosi IM, Müller R (2005) Empirical mode decomposition and correlation properties of long daily ozone records. Phys Rev E. doi:10.1103/PhysRevE.71.056126

    Google Scholar 

  • Jha R, Raju D, Sen A (2006) Analysis of tokamak data using a novel Hilbert transform based technique. Phys Plasmas. doi:10.1063/1.2218491

    Google Scholar 

  • Jin S, Jin R, Li JH (2014) Pattern and evolution of seismo-ionospheric disturbances following the 2011 Tohoku earthquakes from GPS observations. J Geophys Res Space Phys 119:7914–7927

    Article  Google Scholar 

  • Kagan YY, Jackson DD (1991) Seismic gap hypothesis: Ten years after. J Geophys Res 96 (21): 419-421,431

  • King CY (1980) Episodic radon changes in subsurface soil gas along active faults and possible relation to earthquakes. J Geophys Res 85:3065–3078

    Article  Google Scholar 

  • Koike K, Yoshinaga T, Ueyama T, Asaue H (2014) Increased radon-222 in soil gas because of cumulative seismicity at active faults. Earth Planets Space 66:57–65

    Article  Google Scholar 

  • Kumar A, Walia V, Arora BR, Yang TF, Lin S-J, Fu C-C, Chen C-H, Wen K-L (2015) Identifications and removal of diurnal and semidiurnal variations in radon time series data of Hsinhua monitoring station in SW Taiwan using singular spectrum analysis. Nat Hazards 79(1):317–330

    Article  Google Scholar 

  • Lee HW, Lee JW, Jung WG, Lee GK (2007) The periodic moving average filter for removing motion artifacts from PPG signals. Int J Control Autom Syst 5(6):701–706

    Google Scholar 

  • Lee S, Ha K, Hamm S, Ko K (2013) Groundwater responses to the 2011 Tohoku Earthquake on Jeju Island, Korea. Hydrol Process 27(8):1147–1157

    Article  Google Scholar 

  • Levine JD, Funes P, Dowse HB, Hall JC (2002) Signal analysis of behavioral and molecular cycles. BMC Neurosci 3(1):1–25

    Article  Google Scholar 

  • Lott DF, Hart BL, Howell MW (1981) Retrospective studies of unusual animal behavior as an earthquake predictor. Geophys Res Lett 8(12):1203–1206

    Article  Google Scholar 

  • Miklavčić I, Radolić V, Vuković B, Poje M, Varga M, Stanić D, Planinić J (2008) Radon anomaly in soil gas as an earthquake precursor. Appl Radiat Isot 66(10):1459–1466

    Article  Google Scholar 

  • Mjachkin VI, Brace WF, Sobolev GA, Dieterich JH (1975) Two models for earthquake forerunners. Pure Appl Geophys 113(1):169–181

    Article  Google Scholar 

  • Mogi K (1974) Regularities in the spatial and temporal distribution of large earthquakes and earthquake prediction. In: Symposium on earthquake forerunners searching, Tashkent, USSR

  • Mogro-Campero A, Fleischer RL, Likes RS (1980) Changes in subsurface radon concentration associated with earthquakes. J Geophys Res 85(B6):3053–3057

    Article  Google Scholar 

  • Myachkin VI, Sobolev GA, Dolbilkina NA, Morozow VN, Preobrazensky VB (1972) The study of variations in geophysical fields near focal zones of Kamchatka. Tectonophysics 14(3–4):287–293

    Article  Google Scholar 

  • Neogi S, Dasgupta S, Fukuoka M (1998) High P-T polymetamorphism, Dehydration Melting and Generation of migmatites and Granites in the Higher Himalayan Crystalline Complex, Sikkim, India. J Petrol 39(1):61–99

    Article  Google Scholar 

  • Pegram GGS, Peel MC, McMahon TA (2008) Empirical mode decomposition using rational splines: an application to rainfall time series. Proc R Soc Lond A 464:1483–1501

    Article  Google Scholar 

  • Pérez NM, Hernández PA, Igarashi G, Trujillo I, Nakai S, Sumino H, Wakita H (2008) Searching and detecting earthquake geochemical precursors in CO2-rich groundwaters from Galicia, Spain. Geochem J 42:75–83

    Article  Google Scholar 

  • Petraki E, Nikolopoulos D, Panagiotaras D, Cantzos D, Yannakopoulos P, Nomicos C, Stonham J (2015) Radon-222: a potential short-term earthquake precursor. J Earth Sci Clim Change 6(6):1–11

    Google Scholar 

  • Planinić J, Radolić V, Vuković B (2004) Radon as an earthquake precursor. Nucl Instrum Methods Phys Res A 530:568–574

    Article  Google Scholar 

  • Przylibski TA, Wyłomańska A, Zimroz R, Fijałkowska-Lichwa L (2015) Application of spectral decomposition of 222Rn activity concentration signal series measured in Niedźwiedzia Cave to identification of mechanisms responsible for different time-period variations. Appl Radiat Isot 104:74–86

    Article  Google Scholar 

  • Pulinets SA, Ouzounov D, Cicarlo L (2006) Thermal, atmospheric and ionospheric anomalies around the time of the Colima M 7.8 earthquake of 21 January 2003. Ann Geophys 24:835–849

    Article  Google Scholar 

  • Ramola RC, Prasad Y, Prasad G, Kumar S, Choubey VM (2008) Soil gas radon as seismotectonic indicator in Garhwal Himalaya. Appl Radiat Isot 66(10):1523–1530

    Article  Google Scholar 

  • Reddy DV, Sukhija BS, Nagabhushanam P, Kumar D (2004) A clear case of radon anomaly associated with a micro-earthquake event in a Stable Continental Region. Geophys Res Lett 31(10):L10609

    Article  Google Scholar 

  • Reddy DV, Sukhija BS, Nagabhushanam P, Reddy GK, Kumar D, Lachassagne P (2006) Soil gas radon emanometry: a tool for delineation of fractures for groundwater in granitic terrains. J Hydrol 329(1–2):186–195

    Article  Google Scholar 

  • Sarkar S, Barman C, Mondal M, Bose M, Mukherjee S (2016) Analysis of defects in externally driven dust-density wavefronts in cogenerated dusty plasma using the time-resolved Hilbert–Huang transform. J Phys D Appl Phys. doi:10.1088/0022-3727/49/20/205201

    Google Scholar 

  • Schery SD, Siegel D (1986) The role of channels in the transport of radon from the soil. J Geophys Res Solid Earth 91(B12):12366–12374

    Article  Google Scholar 

  • Schery SD, Gaeddert DH, Wilkening MH (1984) Factors affecting exhalation of radon from a gravelly sandy loam. J Geophys Res 89(D5):7299–7309

    Article  Google Scholar 

  • Scholz CH, Sykes LR, Aggarwal YP (1973) Earthquake prediction: a physical basis. Science 181(4102):803–810

    Article  Google Scholar 

  • Shapiro MH, Rice A, Mendenhall MH, Melvin JD, Tombrello TA (1985) Recognition of environmentally caused variations in radon time series. Pure Appl Geophys 122:309–326

    Article  Google Scholar 

  • Shekel J (1953) Instantaneous Frequency. Proc IRE 41:548

    Article  Google Scholar 

  • Singh RP, Kumar JS, Zlotnicki J, Kafatos M (2010) Satellite detection of carbon monoxide emission prior to the Gujarat earthquake of 26 January 2001. Appl Geochem 25(4):580–585

    Article  Google Scholar 

  • Spanos PD, Giaralis A, Politis NP (2007) Time frequency representation of earthquake accelerograms and inelastic structural response records using the adaptive chirplet decomposition and empirical mode decomposition. Soil Dyn Earthq Eng 27:675–689

    Article  Google Scholar 

  • Stuart WD (1974) Diffusionless dilatancy model for earthquake precursors. Geophys Res Lett 1(6):261–264

    Article  Google Scholar 

  • Sultankhodzhayev AN, Latipov SU, Zakirov TZ, Zigan FG (1980) Dependence of hydrogeoseismological anomalies on the energy and epicentral distance of earthquakes. Dokl Akad Nauk Uzb SSR 5:57–59

    Google Scholar 

  • Thomas DM (1988) Geochemical precursors to seismic activity. Pure Appl Geophys 126:241–266

    Article  Google Scholar 

  • Titchmarsh EC (1948) Introduction to the theory of Fourier integrals. Oxford University Press, Oxford

    Google Scholar 

  • Toutain JP, Baubron JC (1999) Gas geochemistry and seismotetonics: a review. Tectonophysics 304:1–27

    Article  Google Scholar 

  • Virk HS, Singh B (1993) Geochemical challenges to earthquake prediction. Proc Natl Acad Sci USA 93:3781–3786

    Google Scholar 

  • Walia V, Bajwa BS, Virk HS, Sharma N (2003) Relationships between seismic parameters and amplitudes of radon anomalies in N-W Himalaya, India. Radiat Meas 36:393–396

    Article  Google Scholar 

  • Wharton AM, Iyenger ANS, Janaki MS (2013) Study of nonlinear oscillations in glow discharge plasma using empirical mode decomposition and Hilbert Huang transform. Phys Plasmas. doi:10.1063/1.4789853

    Google Scholar 

  • Wu MC, Hu CK (2006) Empirical mode decomposition and synchrogram approach tocardio respiratory synchronization. Phys Rev E 73:051917

    Article  Google Scholar 

  • Wyss M, Booth DC (1997) The IASPEI procedure for the evaluation of earthquake precursors. Geophys J Int 131:423–424

    Article  Google Scholar 

  • Tanner AB (1964) Radon migration in the ground: a review. In: JAS Adams, WM Lowder (eds) The natural radiation environment symposium proceedings, Houston, Texas, Apr. 10–13, 1963, University of Chicago press, Chicago, pp. 161–190

  • Yinfeng D, Yingmin L, Mingkui X, Ming L (2008) Analysis of earthquake ground motions using an improved Hilbert Huang transform. Soil Dyn Earthq Eng 28:7–19

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the University Grants Commission (UGC), Govt. of India, for their financial support through the UPE-II programme (for Jadavpur University) which provided funds for the measuring instruments. The authors gratefully acknowledge the Registrar of Jadavpur University and the Director of National Institute of Technology Sikkim for their efforts, without which this work would not have been possible. The authors are also grateful to Prof. Bikash Sinha and Dr. Debasis Ghose for their continuous support and inspiration behind this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Argha Deb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, S., Deb, A., Nurujjaman, M. et al. Identification of pre-seismic anomalies of soil radon-222 signal using Hilbert–Huang transform. Nat Hazards 87, 1587–1606 (2017). https://doi.org/10.1007/s11069-017-2835-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-017-2835-1

Keywords

Navigation