Skip to main content
Log in

Singular spectrum analysis on soil radon time series (222Rn) in Kachchh, Gujarat, India: detection of periodic oscillations and earthquake precursors

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The influence of various meteorological parameters on the observed time series of soil radon (222Rn) in the form of periodic oscillations is profound and well established. An attempt is made in the present study to identify and remove the periodic oscillations using singular spectrum analysis (SSA) to identify earthquake precursors in the time series of soil radon (222Rn) recorded at Badargadh, Kachchh region of Gujarat, India, for the period from February 21 to June 10, 2011. The temperature has shown diurnal oscillations, whereas radon and pressure show the mixture of diurnal and semi-diurnal oscillations. A Butterworth digital filter has been applied to the observed data of all parameters (222Rn, pressure, temperature, and humidity) to remove the long periodic trends (more than 30 days). The periodic and aperiodic components in the time series of soil radon are identified and separated using SSA. While correlating the radon with other parameters, we found that the aperiodic radon has negative correlation with temperature and the radon has positive correlation with humidity and pressure. Two earthquakes of magnitudes M3.7 and M4.2 which occurred on March 26, 2011, and May 17, 2011, respectively, are being investigated to identify anomalies before these earthquakes. These earthquakes are located within a distance of 100 km from Badargadh. Based on the statistical analysis of mean+2*sigma, we observed the anomalous radon signal before the occurrence of these earthquakes with relative percentage of 94–96% at Badargadh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bourai AA, Gusain GS, Rautela BS, Joshi V, Prasad G, Ramola RC (2012) Variations in radon concentration in groundwater of Kumaon Himalaya, India. Radiat Prot Dosim 152:55–57. https://doi.org/10.1093/rpd/ncs186

    Article  Google Scholar 

  • Chaudhuri H, Barman C, Iyengar ANS, Ghose D, Sen P, Sinha B (2013) Long range correlation in earthquake precursory signals. Eur Phys J Spec Top 222:827–838

    Article  Google Scholar 

  • Chege MW, Rathore IVS, Chhabra SC, Mustapha AO (2009) The influence of meteorological parameters on indoor radon in selected traditional Kenyan dwellings. J Radiol Prot 29:95–103

    Article  Google Scholar 

  • Chen Q, Van Dam T, Sneeuw N, Collilieux X, Weigelt M, Rebischung P (2013) Singular spectrum analysis for modeling seasonal signals from GPS time series. J Geodyn 72:25–35

    Article  Google Scholar 

  • Choubey VM, Kumar N, Arora BR (2009) Precursory signatures in the radon and geo hydrological borehole data for M4.9 Kharsali earthquake of Garhwal Himalaya. Sci Total Environ 407:5877–5883

    Article  Google Scholar 

  • Choudhuri H, Das NK, Bhandari RK, Sen P, Sinha B (2010) Radon activity measurements around Bakreswar thermal springs. Radiat Meas 45:143–146

    Article  Google Scholar 

  • Crockett RGM, Perrier F, Richon P (2010) Spectral-decomposition techniques for the identification of periodic and anomalous phenomena in radon time-series. Nat Hazards Earth Syst Sci 10:559–564

    Article  Google Scholar 

  • De Leeuw J (2008) Singular Spectrum Analysis in R. http://gifi.stat.ucla.edu/janspubs/2009/notes/deleeuw_crutcher_U_09.pdf

  • Fu CC, Walia V, Yang TF, Lee LC, Liu TK, Chen CH, Kumar A, Lin SJ, Lai TH, Wen KL (2017) Preseismic anomalies in soil-gas radon associated with 2016 M 6.6 Meinong earthquake, Southern Taiwan. Terr Atmos Ocean Sci 28(5):787–798. https://doi.org/10.3319/TAO.2017.03.22.01

    Article  Google Scholar 

  • Ghil M, Allen RM, Dettinger MD, Ide K, Kondrashov D (2002) Advanced spectral methods for climatic time series. Rev Geophys 40(1):3.1–3.41. https://doi.org/10.1029/2000RG000092

    Article  Google Scholar 

  • Ghosh D, Deb A, Sengupta R (2009) Anomalous radon emission as precursor of earthquake. Appl Geophys 69(2):67–81

    Article  Google Scholar 

  • Goto M, Yasuoka Y, Nagahama H, Muto J, Omori Y, Ihara H, Mukai T (2016) Anomalous changes in atmospheric radon concentration before and after the 2011 northern Wakayama Earthquake (Mj 5.5). Radiat Prot Dosimetry 174. https://doi.org/10.1093/rpd/ncw142

  • Hassani H, Zhigljavsky A (2009) Singular spectrum analysis: methodology and application to economic data. J Syst Sci Complex 22(3):372–394. https://doi.org/10.1007/s11424-009-9171-9

    Article  Google Scholar 

  • Heinicke J, Koch U (2000) Slug Flow—A Possible Explanation for hydro geochemical earthquake precursors at Bad Brambach, Germany. Pure Appl Geophys 157:1621–1641

    Article  Google Scholar 

  • Igarashi G, Wakita H (1990) Groundwater radon anomalies associated with earthquakes. Tectonophysics 180:2–4

    Article  Google Scholar 

  • Iwata D, Nagahama H, Muto J, Yasuoka Y (2018) Non-parametric detection of atmospheric radon concentration anomalies related to earthquakes. Sci Rep 8:13028. https://doi.org/10.1038/s41598-018-31341-5

  • Jaishi HP, Singh S, Tiwari RP, Tiwari RC (2014) Correlation of radon anomalies with seismic events along Mat fault in Serchhip District, Mizoram, India. Appl Radiat Isot 79–84

  • King CY (1978) Radon emanation on San Andreas Fault. Nature 271:516–519

    Article  Google Scholar 

  • Kothyari G, Rakesh D, Singh A, Chauhan G, Thakkar M, Biswas S (2016) Tectonic evolution and stress pattern of South Wagad Fault at the Kachchh Rift Basin in western India. Geol Mag 154:875–887. https://doi.org/10.1017/S0016756816000509

    Article  Google Scholar 

  • Külahcı F, Çiçek (2015) Time-series analysis of water and soil radon anomalies to identify micro-macro-earthquakes. Arab J Geosci 8:5239–5246

    Article  Google Scholar 

  • Külahcı F, Şen Z (2014) On the correction of spatial and statistical uncertainties in systematic measurements of 222Rn for earthquake prediction. Surv Geophys 35:449–478. https://doi.org/10.1007/s10712-013-9273-8

    Article  Google Scholar 

  • Kumar A, Walia V, Arora BR, Yang TF, Lin SJ, Fu CC, Chen CH (2015) Identifications and removal of diurnal and semidiurnal variations in radon time series data of Hsinhua monitoring station in SW Taiwan using singular spectrum analysis. Nat Hazards 79:317–330. https://doi.org/10.1007/s11069-015-1844-1

    Article  Google Scholar 

  • Kumar G, Kumari P, Kumar A, Prasher S, Kumar M (2017) A study of radon and thoron concentration in the soil along the active fault of NW Himalayas in India. Ann Geophys 60(3):S0329. https://doi.org/10.4401/ag-7057

    Article  Google Scholar 

  • Maldonado SC, Monnin M, Segovia N, Seidel JL (1996) A radon measurement network to study radon anomalies as precursors of strong earthquakes in the Guerrero seismic gap. 11 WCEE, Pergamon. Paper 1762, p 6

  • Pullinets SA, Alekseev VA, Legerika AD, Khegai VV (1997) Radon and metallic aerosols emanation before strong earthquakes and their role in atmosphere and ionosphere modification. Adv Space Res 20:2173–2176

    Article  Google Scholar 

  • Ramola RC, Prasad Y, Prasad G, Kumar S, Choubey VM (2008) Soil-gas radon as seismotectonic indicator in Garhwal Himalaya. J Appl Radiat Isot 66:1523–1530

    Article  Google Scholar 

  • Richon P, Perrier F, Pili E, Sabroux JC (2009) Detectability and significance of 12 hr barometric tide in radon-222 signal, dripwater flow rate, air temperature and carbon dioxide concentration in an underground tunnel. Geophys J Int 176:683–694. https://doi.org/10.1111/j.1365-246X.2008.04000

    Article  Google Scholar 

  • Rikitake T (1979) Classification of earthquake precursors. Tectonophysics 54:293–309. https://doi.org/10.1016/0040-1951(79)90372-X

    Article  Google Scholar 

  • Sac MM, Harmansah C, Camgoz B, Sozbilir H (2011) Radon monitoring as the earthquake precursor in fault line in Western Turkey. Ekoloji 20(79):93–98. https://doi.org/10.5053/ekoloji.2011.7912

    Article  Google Scholar 

  • Sahoo SK, Katlamudi M, Shaji JP, Murali Krishna KS, Udayalaxmi G (2018) Influence of meteorological parameters on the soil radon (Rn222) emanation in Kutch, Gujarat, India. Environ Monit Assess 190:111. https://doi.org/10.1007/s10661-017-6434-0

    Article  Google Scholar 

  • Scholz CH, Sykes LR, Aggarwal YP (1973) Earthquake prediction: a physical basis. Science 181:803–810

    Article  Google Scholar 

  • Singh M, Ramola RC, Singh S, Virk HS (1988) The influence of meteorological parameters on soil gas radon. J Assoc Explor Geophys 9:85–90

    Google Scholar 

  • Steinitz G, Begin ZB, Gazit-Yaari N (2003) A statistically significant relation between Rn flux and weak earthquakes in the Dead Sea rift valley. Geology 31:505–508. https://doi.org/10.1130/0091-7613

    Article  Google Scholar 

  • Sundal AV, Valen V, Soldal O, Strand T (2008) The influence of meteorological parameters on soil radon levels in permeable glacial sediments. Sci Total Environ 389(2-3):418–428. https://doi.org/10.1016/j.scitotenv.2007.09.001

    Article  Google Scholar 

  • Toutain JP, Baubron JC (1999) Gas geochemistry and seismo tectonics: a review. Tectonophysics 304:1–27

    Article  Google Scholar 

  • Virk HS, Walia V, Kumar N (2001) Helium/radon precursory anomalies of Chamoli earthquake, Garhwal Himalaya India. J Geodyn 31:201–210

    Article  Google Scholar 

  • Wakita H, Igarashi G, Notsu K (1991) An anomalous radon decreases in ground-water prior to an M6.0 earthquake: a possible precursor. Geophys Res Lett 18:629–632

    Article  Google Scholar 

  • Walia V, Virk HS, Yang TF, Mahajan S, Walia M, Bajwa BS (2005) Earthquake prediction studies using radon as a precursor in N-W Himalayas, India: a case study. TAO 4:775–804

    Google Scholar 

  • Walia V, Yang TF, Lin S-J, Hong WL, Fu CC, Wen KL, Chen CH (2009) Continuous temporal soil-gas composition variations for earthquake precursory studies along Hsincheng and Hsinhua faults in Taiwan. Radiat Meas 44:934–939

    Article  Google Scholar 

  • Yang TF, Fu CC, Walia V, Chen CH, Chyi LL, Liu TK, Song SR, Lee M, Lin CW, Lin CC (2006) Seismo-geochemical variations in SW Taiwan: multiparameter automatic gas monitoring results. Pure Appl Geophys 163:693–709. https://doi.org/10.1007/s00024-006-0040-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their gratitude to Director and Director General of ISR for permitting us to publish this work and their constant support in undertaking this research. The authors extend high gratitude to Dr. Amjad Kallel, Chief Editor, Arabian Journal of Geosciences, and two anonymous reviewers for their valuable suggestions to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhusudhanarao Katlamudi.

Additional information

Responsible Editor: Amjad Kallel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S.K., Katlamudi, M. & Gakka, U.L. Singular spectrum analysis on soil radon time series (222Rn) in Kachchh, Gujarat, India: detection of periodic oscillations and earthquake precursors. Arab J Geosci 13, 973 (2020). https://doi.org/10.1007/s12517-020-05946-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-05946-y

Keywords

Navigation