Skip to main content
Log in

Two models for earthquake forerunners

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Summary

Similar precursory phenomena have been observed before earthquakes in the United States, the Soviet Union, Japan, and China. Two quite different physical models are used to explain these phenomena. According to a model developed by US seismologists, the so-called dilatancy diffusion model, the earthquake occurs near maximum stress, following a period of dilatant crack expansion. Diffusion of water in and out of the dilatant volume is required to explain the recovery of seismic velocity before the earthquake. According to a model developed by Soviet scientists growth of cracks is also involved but diffusion of water in and out of the focal region is not required. With this model, the earthquake is assumed to occur during a period of falling stress and recovery of velocity here is due to crack closure as stress relaxes. In general, the dilatancy diffusion model gives a peaked precursor form, whereas the dry model gives a bay form, in which recovery is well under way before the earthquake. A number of field observations should help to distinguish between the two models: study of post-earthquake recovery, time variation of stress and pore pressure in the focal region, the occurrence of pre-existing faults, and any changes in direction of precursory phenomena during the anomalous period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. L. Nersesov, A. N. Semionov andI. G. Simbireva,Space time distribution of ratios of travel times of transverse and longitudinal waves in Garm region, Exp. Seismology (1971), Sbornik, 334.

  2. O. M. Barsukov,Relationship between the electrical resistivity of rocks and tectonic processes, Izv. Earth Physics No. 1 (1970), 84.

    Google Scholar 

  3. V. I. Ulomov andB. Z. Malashev,O predvestike silnogo tecktonicheskogo zemletria senia, Doke. A.N. SSSR,176 No. 2 (1967).

  4. Y. P. Aggarwal, L. R. Sykes, J. Armbruster andM. L. Sbar,Premonitory changes in seismic velocity and earthquake prediction, Nature241 (1973), 101.

    Google Scholar 

  5. J. H. Whitcomb, J. D. Garmany andD. L. Anderson,Earthquake prediction: Variation of seismic velocities before the San Fernando earthquake, Science180 (1973), 632.

    Google Scholar 

  6. R. Robinson, R. L. Wesson andW. L. Ellsworth,Variation of P-wave velocity before the Bear Valley, California, earthquake of 24 February 1972, Science184 (1974), 1281.

    Google Scholar 

  7. H. A. Sadovsky,Otvetstennij redactor. Sbornik. Physica ochaga zemletriasenia, Nauka, Moscow (in press).

  8. V. I. Mjachkin, G. A. Sobolev, N. A. Dolbilkina, V. N. Morosov andV. B. Preobrazensky,The study of variations in geophysical fields near focal zones of Kamchatka, Tectonophysics14 (1972), 287.

    Google Scholar 

  9. W. F. Brace andE. G. Bombolakis,A note on brittle crack growth in compression, J. Geophys. Res.68 (1963), 3709.

    Google Scholar 

  10. B. V. Kostrov,Teoria Ochaga zemletriasenia Nauka, Moscow (in press).

  11. V. M. Finkel,Physica razruschenia, Mettalurgia, Moscow (1970).

    Google Scholar 

  12. K. Mogi,Source locations of elastic shocks in the fracturing process in rocks, Bull. Seism. Soc. Japan46 (1968), 5.

    Google Scholar 

  13. M. V. Raz andS. N. Chernischov,Treschinovatost i svoistra treschinovatosty gornick porod, Nedra, Moscow (1970).

    Google Scholar 

  14. G. A. Sobolev,The study of precursors of the failure under biaxial compression, this issue Pure and Appl. Geophys. (in press).

  15. V. I. Keilis-Borok andL. N. Molinovskaja,Ob odnoi zakonomernosty v vozniknovenii selnikh zemletriasenii. Sbornik Seismikheskie metody issledovania, Nauka, Moscow (1966).

    Google Scholar 

  16. S. A. Fedotov,O seismicheskom ziele, vozmozhnosty kolichestvenogo seismicheskogo raionirovania i dolgosrochnom seismikhiskom prognoze. Seismicheskie raionirovanie SSSR, Nauka, Moscow (1968).

    Google Scholar 

  17. U. A. Mamadaliev,Ob issledovanii parametrov seismicheskogo regima vo vremeny i prostranstve Voprosy regionalnoi seismichnosty Szednei Azii Ilim, Phrunze (1962).

    Google Scholar 

  18. A. N. Semionov,Izmenenie otnoschenia vremioi probega poperechnich i prodolnich voln pered silnimy zemletriaseniamji, Izvestia AN SSSR, Physika Zemly, No. 4 (1969).

  19. V. I. Mjachkin andN. A. Dolbilkina,Seismicheskoe prosvechivanie ochagorikh zon, VINITI, Moscow (1973).

    Google Scholar 

  20. M. S. Anziferov,O primenenii geoakusticheskide metodov k rescheniu problemy prognoza zemletziasenij, Trudy Geophysicheskogo Instituta, No. 25 (1954).

  21. I. Tsubokava, V. Ogava andT. Hayashi,Crustal movements before and after the Niigata earthquake, J. Geol. Soc. Japan10 (1964).

  22. L. A. Latinina andR. M. Karmaleeva,Izmerenie medlennikh dvizhenii v zemnoi core kak metod poiska predvestnikov zemletziosenii, Sbornik. Physicheskie osnovania poiskov metodov prognoza zemletriasenii, Nauka, Moscow (1970).

    Google Scholar 

  23. A. E. Ostrovskii,Ob izmeneniakh naklonov zemnoi poverkhnosty pered silnimji blizkimi zemletriaseniami. Sbornik. Physicheskie osnovania poiskov metodov prognoza zemletriasenii, Nauke, Moscow (1970).

    Google Scholar 

  24. G. A. Sobolev andV. N. Morosov,Localnie vozmuschenia electricheskogo polja na kamchatke i ikh sviazi s zemletriaseniamy. Sbornik. Physicheskie osnovania poiskov metodov prognoza zemletriasenii, Nauka, Moscow (1970).

    Google Scholar 

  25. P. Bridgman,Volume changes in the plastic stages of simple compression, J. Appl. Phys.20 (1949), 1241.

    Google Scholar 

  26. B. W. Paulding, Jr., Crack growth during brittle fracture in compression, PhD thesis, Mass. Inst. of Technology (1965).

  27. C. H. Scholz,Experimental study of the fracturing process in brittle rock, J. Geophys. Res.73 (1968), 1447.

    Google Scholar 

  28. H. E. McKinstry,Structural control of ore deposition in fissure veins, Amer. Inst. Min. Met. Engr. Tech. Pub. No. 1267, Mining Technology (Jan., 1941), 25 pp.

  29. E. T. Brown andJ. A. Hudson,Progressive collapse of simple block-jointed systems, Australian Geomechanics Jour.22 (1972), 49.

    Google Scholar 

  30. D. Tocher,Anisotropy in rocks under simple compression, Trans. Amer. Geophys. Un.38 (1957), 89.

    Google Scholar 

  31. S. Matsuchima,Variation of the elastic wave velocities of rocks in the process of deformation and fracture under high pressure, J. Physics of the Earth8, Kyoto Univ. Bull. No. 32 (1960), 1.

    Google Scholar 

  32. W. F. Brace andA. S. Orange,Electrical resistivity changes in saturated rocks during fracture and frictional sliding, J. Geophys. Res.73 (1968), 1433.

    Google Scholar 

  33. A. Nur,Dilatancy, pore fluids, and premonitory variations of t s /t p travel times, Bull. Seismol. Soc. Amer.62 (1972), 1217.

    Google Scholar 

  34. C. H. Scholz, L. R. Sykes andY. P. Aggarwal,Earthquake prediction: A physical basis, Science181 (1973), 803.

    Google Scholar 

  35. W. F. Brace,Current laboratory studies pertaining to earthquake prediction, Techonophysics6 (1968), 75.

    Google Scholar 

  36. D. L. Anderson andJ. H. Whitcomb,The dilatancy-diffusion model of earthquake prediction, Proc. Conf. on Tectonic Problems of the San Andreas Fault System, edited byR. L. Kovach andA. Nur, Stanford Univ. Publ. XIII (1973), 417.

  37. K. Hadley,Laboratory investigation of dilatancy and motion on fault surfaces at low confining pressures, Proc. Conf. on Tectonic Problems of the San Andreas Fault System, edited byR. L. Kovach andA. Nur, Stanford Univ. Publ. XIII (1973), 427.

  38. W. F. Brace,Dilatancy-related electrical resistivity changes in rocks, this issue Pure and Appl. Geophys.112 (1974), 701.

    Google Scholar 

  39. B. Brady,Theory of earthquakes, Part I, A scale independent theory of rock failure Pure and Appl. Geophys. (in press).

  40. K. Mogi,Regularities in the spatial and temporal distribution of large earthquakes and earthquake prediction, inSymposium on Earthquake Forerunners Searching Tashkent, USSR (1974).

  41. W. S. Stuart,Diffusionless dilatancy model for earthquake precursors, Geophys. Res. Letters Vol.,1 (1974), 261.

    Google Scholar 

  42. V. F. Bouchkovskij,Izmenenio gradienta electricheskogo potenziala atmospheri kak odin iz vos mogenich predvestnikov zemletria senij, Problemi prognoza zemletriasenij, Moskva, Uzdatelstvo A.N. SSSR (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mjachkin, V.I., Brace, W.F., Sobolev, G.A. et al. Two models for earthquake forerunners. PAGEOPH 113, 169–181 (1975). https://doi.org/10.1007/BF01592908

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01592908

Keywords

Navigation