Skip to main content

Advertisement

Log in

Memantine Improves Memory and Neurochemical Damage in a Model of Maple Syrup Urine Disease

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Maple Syrup Urine Disease (MSUD) is a metabolic disease characterized by the accumulation of branched-chain amino acids (BCAA) in different tissues due to a deficit in the branched-chain alpha-ketoacid dehydrogenase complex. The most common symptoms are poor feeding, psychomotor delay, and neurological damage. However, dietary therapy is not effective. Studies have demonstrated that memantine improves neurological damage in neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases. Therefore, we hypothesize that memantine, an NMDA receptor antagonist can ameliorate the effects elicited by BCAA in an MSUD animal model. For this, we organized the rats into four groups: control group (1), MSUD group (2), memantine group (3), and MSUD + memantine group (4). Animals were exposed to the MSUD model by the administration of BCAA (15.8 µL/g) (groups 2 and 4) or saline solution (0.9%) (groups 1 and 3) and treated with water or memantine (5 mg/kg) (groups 3 and 4). Our results showed that BCAA administration induced memory alterations, and changes in the levels of acetylcholine in the cerebral cortex. Furthermore, induction of oxidative damage and alterations in antioxidant enzyme activities along with an increase in pro-inflammatory cytokines were verified in the cerebral cortex. Thus, memantine treatment prevented the alterations in memory, acetylcholinesterase activity, 2′,7′-Dichlorofluorescein oxidation, thiobarbituric acid reactive substances levels, sulfhydryl content, and inflammation. These findings suggest that memantine can improve the pathomechanisms observed in the MSUD model, and may improve oxidative stress, inflammation, and behavior alterations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and available upon request.

References

  1. Chuang DT, Shih VE, Max Wynn R (2019) Maple syrup urine disease (branched-Chain Ketoaciduria). In: Valle DL, Antonarakis S, Ballabio A, Beaudet AL, Mitchell GA (eds) The online metabolic and molecular bases of inherited disease. McGraw-Hill Education, New York, pp 1971–1995

    Google Scholar 

  2. Dancis J, Levitz M, Westall RG (1960) Maple syrup urine disease: branched-chain keto-aciduria. Pediatrics 25:72–79

    Article  CAS  PubMed  Google Scholar 

  3. Strauss KA, Morton DH (2003) Branched-chain ketoacyl dehydrogenase deficiency: maple syrup disease. Curr Treat Options Neurol 5:329–341

    Article  PubMed  Google Scholar 

  4. Strauss KA, Carson VJ, Soltys K, Young ME, Bowser LE, Puffenberger EG, Brigatti KW, Williams KB, Robinson DL, Hendrickson C, Beiler K, Taylor CM, Haas-Givler B, Chopko S, Hailey J, Muelly ER, Shellmer DA, Radcliff Z, Rodrigues A, Loeven K, Heaps AD, Mazariegos GV, Morton DH (2020) Branched-chain α-ketoacid dehydrogenase deficiency (maple syrup urine disease): treatment, biomarkers, and outcomes. Mol Genet Metab 129:193–206

    Article  CAS  PubMed  Google Scholar 

  5. Sánchez SJ, Visus A, Minana F (2010) Enfermidades de orina de jarabe arce. In: Sanjurjo PBA (ed) Diagnóstico y tratamiento de las enfermedades metabólicas hereditárias 3edn. Eddiciones Ergon, Madrid, p 1332

    Google Scholar 

  6. Strauss KA, Wardley B, Robinson D, Hendrickson C, Rider NL, Puffenberger EG, Shellmer D, Moser AB, Morton DH (2010) Classical maple syrup urine disease and brain development: principles of management and formula design. Mol Genet Metab 99:333–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Muelly ER, Moore GJ, Bunce SC, Mack J, Bigler DC, Morton DH, Strauss KA (2013) Biochemical correlates of neuropsychiatric Illness in maple syrup urine disease. J Clin Invest 123:1809–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Amaral AU, Wajner M (2022) Pathophysiology of maple syrup urine disease: focus on the neurotoxic role of the accumulated branched-chain amino acids and branched-chain α-keto acids. Neurochem Int 157:105360

    Article  CAS  PubMed  Google Scholar 

  9. Taschetto L, Scaini G, Zapelini HG, Ramos ÂC, Strapazzon G, Andrade VM, Réus GZ, Michels M, Dal-Pizzol F, Quevedo J, Schuck PF, Ferreira GC, Streck EL (2017) Acute and long-term effects of intracerebroventricular administration of α-ketoisocaproic acid on oxidative stress parameters and cognitive and noncognitive behaviors. Metab Brain Dis 32:1507–1518

    Article  CAS  PubMed  Google Scholar 

  10. Scaini G, Jeremias GC, Furlanetto CB, Dominguini D, Comim CM, Quevedo J, Schuck PF, Ferreira GC, Streck EL (2014) Behavioral responses in rats submitted to chronic administration of branched-chain amino acids. JIMD Rep 13:159–167

    Article  PubMed  Google Scholar 

  11. Lemos IS, Wessler LB, Duarte MB, da Silva GL, Bernardo HT, Candiotto G, Torres CA, Petronilho F, Rico EP, Streck EL (2022) Exposure to leucine alters glutamate levels and leads to memory and social impairment in zebrafish. Metab Brain Dis. https://doi.org/10.1007/s11011-022-01070-w

    Article  PubMed  Google Scholar 

  12. Wessler LB, Farias HR, Ronsani JF, Candiotto G, Dos Santos PCL, de Oliveira J, Rico EP, Streck EL (2019) Acute exposure to leucine modifies behavioral parameters and cholinergic activity in zebrafish. Int J Dev Neurosci 78:222–226

    Article  CAS  PubMed  Google Scholar 

  13. Zinnanti WJ, Lazovic J, Griffin K, Skvorak KJ, Paul HS, Homanics GE, Bewley MC, Cheng KC, Lanoue KF, Flanagan JM (2009) Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease. Brain 132:903–918

    Article  PubMed  PubMed Central  Google Scholar 

  14. Killian DM, Chikhale PJ (2001) A bioreversible prodrug approach designed to shift mechanism of brain uptake for amino-acid-containing anticancer agents. J Neurochem 76:966–974

    Article  CAS  PubMed  Google Scholar 

  15. Wajner M, Coelho DM, Barschak AG, Araújo PR, Pires RF, Lulhier FL, Vargas CR (2000) Reduction of large neutral amino acid concentrations in plasma and CSF of patients with maple syrup urine disease during crises. J Inherit Metab Dis 23:505–512

    Article  CAS  PubMed  Google Scholar 

  16. Araújo P, Wassermann GF, Tallini K, Furlanetto V, Vargas CR, Wannmacher CM, Dutra-Filho CS, Wyse AT, Wajner M (2001) Reduction of large Neutral amino acid levels in plasma and brain of hyperleucinemic rats. Neurochem Int 38:529–537

    Article  PubMed  Google Scholar 

  17. Scaini G, Morais MO, Galant LS, Vuolo F, Dall’Igna DM, Pasquali MA, Ramos VM, Gelain DP, Moreira JC, Schuck PF, Ferreira GC, Soriano FG, Dal-Pizzol F, Streck EL (2014) Coadministration of branched-chain amino acids and lipopolysaccharide causes matrix metalloproteinase activation and blood-brain barrier breakdown. Mol Neurobiol 50:358–367

    Article  CAS  PubMed  Google Scholar 

  18. Gold PE (2003) Acetylcholine: cognitive and brain functions. Neurobiol Learn Mem 80:177

    Article  PubMed  Google Scholar 

  19. Rauca C, Kammerer E, Matthies H (1980) Choline uptake and permanent memory storage. Pharmacol Biochem Behav 13:21–25

    Article  CAS  PubMed  Google Scholar 

  20. Halder N, Lal G (2021) Cholinergic system and its therapeutic importance in inflammation and autoimmunity. Front Immunol 12:660342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Scaini G, de Rochi N, Jeremias IC, Deroza PF, Zugno AI, Pereira TC, Oliveira GM, Kist LW, Bogo MR, Schuck PF, Ferreira GC, Streck EL (2012) Evaluation of acetylcholinesterase in an animal model of maple syrup urine disease. Mol Neurobiol 45:279–286

    Article  CAS  PubMed  Google Scholar 

  22. Sitta A, Ribas GS, Mescka CP, Barschak AG, Wajner M, Vargas CR (2014) Neurological damage in MSUD: the role of oxidative stress. Cell Mol Neurobiol 34:157–165

    Article  CAS  PubMed  Google Scholar 

  23. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Teleanu DM, Niculescu AG, Lungu II, Radu CI, Vladâcenco O, Roza E, Costăchescu B, Grumezescu AM, Teleanu RI (2022) An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J Mol Sci. https://doi.org/10.3390/ijms23115938

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wessler LB, de Miranda Ramos V, Bittencourt Pasquali MA, Fonseca Moreira JC, de Oliveira J, Scaini G, Streck EL (2019) Administration of branched-chain amino acids increases the susceptibility to lipopolysaccharide-induced inflammation in young Wistar rats. Int J Dev Neurosci 78:210–214

    Article  CAS  PubMed  Google Scholar 

  26. Scaini G, Tonon T, de Moura Souza CF, Schuck PF, Ferreira GC, Quevedo J, Neto JS, Amorim T, Camelo JS Jr, Margutti AVB, Hencke Tresbach R, Sperb-Ludwig F, Boy R, de Medeiros PFV, Schwartz IVD, Streck EL (2018) Evaluation of plasma biomarkers of inflammation in patients with maple syrup urine disease. J Inherit Metab Dis. https://doi.org/10.1007/s10545-018-0188-x

    Article  PubMed  Google Scholar 

  27. Scaini G, Jeremias IC, Morais MO, Borges GD, Munhoz BP, Leffa DD, Andrade VM, Schuck PF, Ferreira GC, Streck EL (2012) DNA damage in an animal model of maple syrup urine disease. Mol Genet Metab 106:169–174

    Article  CAS  PubMed  Google Scholar 

  28. Rosa L, Scaini G, Furlanetto CB, Galant LS, Vuolo F, Dall’Igna DM, Schuck PF, Ferreira GC, Dal-Pizzol F, Streck EL (2016) Administration of branched-chain amino acids alters the balance between pro-inflammatory and anti-inflammatory cytokines. Int J Dev Neurosci 48:24–30

    Article  CAS  PubMed  Google Scholar 

  29. Mescka CP, Wayhs CA, Vanzin CS, Biancini GB, Guerreiro G, Manfredini V, Souza C, Wajner M, Dutra-Filho CS, Vargas CR (2013) Protein and lipid damage in maple syrup urine disease patients: l-carnitine effect. Int J Dev Neurosci 31:21–24

    Article  CAS  PubMed  Google Scholar 

  30. de Medeiros BZ, Wessler LB, Duarte MB, Lemos IS, Candiotto G, Canarim RO, Dos Santos PCL, Torres CA, Scaini G, Rico EP, Generoso JS, Streck EL (2022) Exposure to leucine induces oxidative stress in the brain of zebrafish. Metab Brain Dis 37:1155–1161

    Article  PubMed  Google Scholar 

  31. Shi X, Ren G, Cui Y, Xu Z (2022) Comparative efficacy and acceptability of cholinesterase inhibitors and memantine based on dosage in patients with vascular cognitive impairment: a network meta-analysis. Curr Alzheimer Res 19:133–145

    Article  CAS  PubMed  Google Scholar 

  32. Reisberg B, Doody R, Stöffler A, Schmitt F, Ferris S, Möbius HJ (2003) Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 348:1333–1341

    Article  CAS  PubMed  Google Scholar 

  33. Bago Rožanković P, Rožanković M, Badžak J, Stojić M, Šušak Sporiš I (2021) Impact of donepezil and memantine on behavioral and psychological symptoms of Alzheimer disease: six-month open-label study. Cogn Behav Neurol 34:288–294

    Article  PubMed  Google Scholar 

  34. Budni J, Feijó DP, Batista-Silva H, Garcez ML, Mina F, Belletini-Santos T, Krasilchik LR, Luz AP, Schiavo GL, Quevedo J (2017) Lithium and memantine improve spatial memory impairment and neuroinflammation induced by β-amyloid 1–42 oligomers in rats. Neurobiol Learn Mem 141:84–92

    Article  CAS  PubMed  Google Scholar 

  35. Bridi R, Fontella FU, Pulrolnik V, Braun CA, Zorzi GK, Coelho D, Wajner M, Vargas CR, Dutra-Filho CS (2006) A chemically-induced acute model of maple syrup urine disease in rats for neurochemical studies. J Neurosci Methods 155:224–230

    Article  CAS  PubMed  Google Scholar 

  36. Vianna MR, Izquierdo LA, Barros DM, de Souza MM, Rodrigues C, Sant’Anna MK, Medina JH, Izquierdo I (2001) Pharmacological differences between memory consolidation of habituation to an open field and inhibitory avoidance learning. Braz J Med Biol Res 34:233–240

    Article  CAS  PubMed  Google Scholar 

  37. Ellman GL, Courtney KD, Andres V Jr., Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  38. Chao LP, Wolfgram F (1973) Purification and some properties of choline acetyltransferase (EC 2.3.1.6) from bovine brain. J Neurochem 20:1075–1081

    Article  CAS  PubMed  Google Scholar 

  39. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  40. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421

    Article  CAS  PubMed  Google Scholar 

  41. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2’,7’-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  CAS  PubMed  Google Scholar 

  42. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145

    Article  CAS  PubMed  Google Scholar 

  43. Bannister JV, Calabrese L (1987) Assays for superoxide dismutase. Methods Biochem Anal 32:279–312

    Article  CAS  PubMed  Google Scholar 

  44. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  45. Tierney AL, Nelson CA (2009) Brain development and the role of experience in the early years. Zero Three 30:9–13

    PubMed  PubMed Central  Google Scholar 

  46. National Research Council, Institute of Medicine Committee on Integrating the Science of Early Childhood (2000). In: Shonkoff JP, Phillips DA (eds) From neurons to neighborhoods: the science of early childhood development. National Academies Press (US), Washington (DC)

    Google Scholar 

  47. Nelson CA, Bloom FE (1997) Child development and neuroscience. Child Dev 68:970–987

    Article  PubMed  Google Scholar 

  48. Menkes JH, Hurst PL, Craig JM (1954) A new syndrome: Progressive familial infantile cerebral dysfunction associated with an unusual urinary substance. Pediatrics 14:462–467

    Article  CAS  PubMed  Google Scholar 

  49. Cheng A, Han L, Feng Y, Li H, Yao R, Wang D, Jin B (2017) MRI and clinical features of maple syrup urine disease: preliminary results in 10 cases. Diagn Interv Radiol 23:398–402

    Article  PubMed  PubMed Central  Google Scholar 

  50. Klee D, Thimm E, Wittsack HJ, Schubert D, Primke R, Pentang G, Schaper J, Mödder U, Antoch A, Wendel U, Cohnen M (2013) Structural white matter changes in adolescents and young adults with maple syrup urine disease. J Inherit Metab Dis 36:945–953

    Article  CAS  PubMed  Google Scholar 

  51. Neinast M, Murashige D, Arany Z (2019) Branched chain amino acids. Annu Rev Physiol 81:139–164

    Article  CAS  PubMed  Google Scholar 

  52. Sperringer JE, Addington A, Hutson SM (2017) Branched-chain amino acids and brain metabolism. Neurochem Res 42:1697–1709

    Article  CAS  PubMed  Google Scholar 

  53. Smith QR, Momma S, Aoyagi M, Rapoport SI (1987) Kinetics of Neutral amino acid transport across the blood-brain barrier. J Neurochem 49:1651–1658

    Article  CAS  PubMed  Google Scholar 

  54. Gasiorowska A, Wydrych M, Drapich P, Zadrozny M, Steczkowska M, Niewiadomski W, Niewiadomska G (2021) The biology and pathobiology of glutamatergic, cholinergic, and dopaminergic signaling in the aging brain. Front Aging Neurosci 13:654931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622

    Article  CAS  PubMed  Google Scholar 

  56. Zhang C, Zhou P, Yuan T (2016) The cholinergic system in the cerebellum: from structure to function. Rev Neurosci 27:769–776

    Article  PubMed  Google Scholar 

  57. Scaini G, Teodorak BP, Jeremias IC, Morais MO, Mina F, Dominguini D, Pescador B, Comim CM, Schuck PF, Ferreira GC, Quevedo J, Streck EL (2012) Antioxidant administration prevents memory impairment in an animal model of maple syrup urine disease. Behav Brain Res 231:92–96

    Article  CAS  PubMed  Google Scholar 

  58. Calabresi P, Picconi B, Parnetti L, Di Filippo M (2006) A convergent model for cognitive dysfunctions in Parkinson’s disease: the critical dopamine-acetylcholine synaptic balance. Lancet Neurol 5:974–983

    Article  CAS  PubMed  Google Scholar 

  59. Perez-Lloret S, Barrantes FJ (2016) Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson’s disease. NPJ Parkinsons Dis 2:16001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Winek K, Soreq H, Meisel A (2021) Regulators of cholinergic signaling in disorders of the central nervous system. J Neurochem 158:1425–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39:73–82

    Article  CAS  PubMed  Google Scholar 

  62. Forman HJ, Zhang H (2021) Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov 20:689–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guerreiro G, Mescka CP, Sitta A, Donida B, Marchetti D, Hammerschmidt T, Faverzani J, Coelho Dde M, Wajner M, Dutra-Filho CS, Vargas CR (2015) Urinary biomarkers of oxidative damage in maple syrup urine disease: the L-carnitine role. Int J Dev Neurosci 42:10–14

    Article  CAS  PubMed  Google Scholar 

  64. Mescka CP, Guerreiro G, Hammerschmidt T, Faverzani J, de Moura Coelho D, Mandredini V, Wayhs CA, Wajner M, Dutra-Filho CS, Vargas CR (2015) L-Carnitine supplementation decreases DNA damage in treated MSUD patients. Mutat Res 775:43–47

    Article  CAS  PubMed  Google Scholar 

  65. Hauschild TC, Guerreiro G, Mescka CP, Coelho DM, Steffens L, Moura DJ, Manfredini V, Vargas CR (2019) DNA damage induced by alloisoleucine and other metabolites in maple syrup urine disease and protective effect of l-carnitine. Toxicol in Vitro 57:194–202

    Article  CAS  PubMed  Google Scholar 

  66. Wessler LB, Ise K, Lemos IC, Rezende VL, Duarte MB, Damiani AP, de Oliveira J, de Andrade VM, Streck EL (2020) Melatonin ameliorates oxidative stress and DNA damage of rats subjected to a chemically induced chronic model of maple syrup urine Disease. Metab Brain Dis 35:905–914

    Article  CAS  PubMed  Google Scholar 

  67. Mescka CP, Rosa AP, Schirmbeck G, da Rosa TH, Catarino F, de Souza LO, Guerreiro G, Sitta A, Vargas CR, Dutra-Filho CS (2016) L-Carnitine prevents oxidative stress in the brains of rats subjected to a chemically Induced chronic model of MSUD. Mol Neurobiol 53:6007–6017

    Article  CAS  PubMed  Google Scholar 

  68. Mescka C, Moraes T, Rosa A, Mazzola P, Piccoli B, Jacques C, Dalazen G, Coelho J, Cortes M, Terra M, Regla Vargas C, Dutra-Filho CS (2011) In vivo neuroprotective effect of L-carnitine against oxidative stress in maple syrup urine disease. Metab Brain Dis 26:21–28

    Article  CAS  PubMed  Google Scholar 

  69. Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Funchal C, Rosa AM, Wajner M, Wofchuk S, Pureur RP (2004) Reduction of glutamate uptake into cerebral cortex of developing rats by the branched-chain alpha-keto acids accumulating in maple syrup urine disease. Neurochem Res 29:747–753

    Article  CAS  PubMed  Google Scholar 

  71. Pietá Dias C, Martins de Lima MN, Presti-Torres J, Dornelles A, Garcia VA, Siciliani Scalco F, Rewsaat Guimarães M, Constantino L, Budni P, Dal-Pizzol F, Schröder N (2007) Memantine reduces oxidative damage and enhances long-term recognition memory in aged rats. Neuroscience 146:1719–1725

    Article  PubMed  Google Scholar 

  72. Dąbrowska-Bouta B, Strużyńska L, Sidoryk-Węgrzynowicz M, Sulkowski G (2021) Memantine modulates oxidative stress in the rat brain following experimental autoimmune encephalomyelitis. Int J Mol Sci 22:11330

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sundaram R, Lakshminarayanan G, Rajesh R, Dharmalingam S, Chidambaram K, Ramamurthy S (2013) Neuroprotective potential of Ocimum sanctum (Linn.) leaf extract in monosodium glutamate induced excitotoxicity. Afr J Pharm Pharmacol 7:1894–1906

    Article  Google Scholar 

  74. Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58:39–46

    Article  CAS  PubMed  Google Scholar 

  75. Bruunsgaard H, Pedersen M, Pedersen BK (2001) Aging and proinflammatory cytokines. Curr Opin Hematol 8:131–136

    Article  CAS  PubMed  Google Scholar 

  76. Muralidharan S, Mandrekar P (2013) Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J Leukoc Biol 94:1167–1184

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mescka CP, Guerreiro G, Donida B, Marchetti D, Wayhs CA, Ribas GS, Coitinho AS, Wajner M, Dutra-Filho CS, Vargas CR (2015) Investigation of inflammatory profile in MSUD patients: benefit of L-carnitine supplementation. Metab Brain Dis 30:1167–1174

    Article  CAS  PubMed  Google Scholar 

  78. Sil S, Ghosh T, Ghosh R (2016) NMDA receptor is involved in neuroinflammation in intracerebroventricular colchicine-injected rats. J Immunotoxicol 13:474–489

    Article  CAS  PubMed  Google Scholar 

  79. Mishra A, Kim HJ, Shin AH, Thayer SA (2012) Synapse loss induced by interleukin-1β requires pre- and post-synaptic mechanisms. J Neuroimmune Pharmacol 7:571–578

    Article  PubMed  PubMed Central  Google Scholar 

  80. Amin SN, El-Aidi AA, Ali MM, Attia YM, Rashed LA (2015) Modification of hippocampal markers of synaptic plasticity by memantine in animal models of acute and repeated restraint stress: implications for memory and behavior. Neuromolecular Med 17:121–136

    Article  CAS  PubMed  Google Scholar 

  81. Funchal C, Zamoner A, dos Santos AQ, Loureiro SO, Wajner M, Pessoa-Pureur R (2005) Alpha-ketoisocaproic acid increases phosphorylation of intermediate filament proteins from rat cerebral cortex by mechanisms involving Ca2+ and cAMP. Neurochem Res 30:1139–1146

    Article  CAS  PubMed  Google Scholar 

  82. Funchal C, de Lima Pelaez P, Loureiro SO, Vivian L, Dall Bello Pessutto F, de Almeida LMV, Tchernin Wofchuk S, Wajner M, Pessoa Pureur R (2002) α-Ketoisocaproic acid regulates phosphorylation of intermediate filaments in postnatal rat cortical slices through ionotropic glutamatergic receptors. Dev Brain Res 139:267–276

    Article  CAS  Google Scholar 

  83. Wang C, Jensen FE (1996) Age dependence of NMDA receptor involvement in epileptiform activity in rat hippocampal slices. Epilepsy Res 23:105–113

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Higher Education Personnel (CAPES), the Brazilian National Council for Scientific and Technological Development (CNPq), the Santa Catarina State Research and Innovation Support Foundation (Fapesc), and the University of Southern Santa Catarina (UNESC).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the research: ISL, GL, ELS. Acquisition of data: ISL, HTB, EP, CAT, CGA, RTM, RFS, APP. Analysis and interpretation of the data: ISL, RAMÁ, GZR, EPR, ELS. Obtaining financing: ELS. Writing of the manuscript: ISL. Critical revision of the manuscript for intellectual content: GL, ELS.

Corresponding author

Correspondence to Emilio Luiz Streck.

Ethics declarations

Competing interest

The authors declare no competing interests.

Ethical Approval

The experimental procedures were previously approved by the ethics committee of the UNESC (Protocol number 30/2020 and 37/2021) and followed the National Institutes of Health Guide for Care and Use of Laboratory Animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemos, I.S., Torres, C.A., Alano, C.G. et al. Memantine Improves Memory and Neurochemical Damage in a Model of Maple Syrup Urine Disease. Neurochem Res 49, 758–770 (2024). https://doi.org/10.1007/s11064-023-04072-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04072-x

Keywords

Navigation