Skip to main content

Advertisement

Log in

Branched-chain ketoacyl dehydrogenase deficiency: Maple syrup disease

  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

Classic maple syrup disease can be managed to allow a benign neonatal course, normal growth, and low hospitalization rates. The majority of affected infants that are prospectively managed have good neurodevelopmental outcome; however, acute metabolic intoxication and neurologic deterioration can develop rapidly at any age. Each episode is associated with a risk for cerebral edema, cerebrovascular compromise, and brain herniation. High plasma leucine and, possibly, alpha-ketoisocaproate are the principal neurotoxins in maple syrup disease. Plasma levels rise rapidly in association with net protein catabolism provoked by common infections and injuries. Transient periods of maple syrup disease encephalopathy appear fully reversible, leaving no clinically detectable neurologic sequelae. In contrast, prolonged amino acid imbalance, particularly if occurring during the critical period of brain development, leads to neuronal hypoplasia, a paucity of synapses, and undermyelination. Stagnated maturation and inadequate nutritional maintenance of brain structure have lifelong neurologic and behavioral consequences. Core elements of effective long-term therapy include screening and identification of asymptomatic newborns, frequent plasma amino acid monitoring, careful attention to branched-chain amino acid nurtriture, prevention of cerebral essential amino acid deficiencies, adequate provision of essential omega-3 class fatty acids and micronutrients deficient in commercial formulas, methods for home monitoring of metabolic control, and a commitment to lifelong therapy. Recognizing the risk for acute leucine intoxication depends on anticipating effects of common childhood infection and physiologic stresses on whole body protein turnover. Successful management of metabolic decompensation is based on the use of home sick-day regimens, rapid availability of branched-chain amino acid-free hyperalimentation solutions for hospitalized children, prevention of hyponatremia in patients with leucinosis, and frequent adjustments of intravenous therapies guided by plasma amino acid levels and indices of metabolic and clinical response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Chuang DT, Shih VE: Maple syrup urine disease (branched-chain ketoaciduria). In The Metabolic and Molecular Basis of Inherited Disease, edn 8. Edited by Scriver CR, Beaudet AL, Valle D, Sly WS. New York: McGraw-Hill; 2001.

    Google Scholar 

  2. Suryawan A, Hawes JW, Harris RA, et al.: A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr 1998, 68:72–81. Exhaustive study on human material shows distribution of whole body transamination and oxidation of BCAAs, and how these differ substantially from the rat.

    PubMed  CAS  Google Scholar 

  3. Morton DH, Strauss KA, Robinson DL, et al.: Diagnosis and treatment of maple syrup disease: a study of 36 patients. Pediatrics 2002, 109:999–1008. This paper describes management and outcome of a large cohort of prospectively treated infants with classic disease, amounting to 219 patient years of follow-up. Principles of neonatal management are presented in detail.

    Article  PubMed  Google Scholar 

  4. Dodd PR, Williams SH, Gundlach AL, et al.: Glutamate and gamma-aminobutyric acid neurotransmitter systems in the acute phase of maple syrup urine disease and citrullinemia encephalopathies in newborn calves. J Neurochem 1992, 59:582–590.

    Article  PubMed  CAS  Google Scholar 

  5. DiGeorge AM, Rezvani I, Garibaldi LR, Schwartz M: Prospective study of maple-syrup-urine disease for the first four days of life. N Engl J Med 1982, 307:1492–1495.

    Article  PubMed  CAS  Google Scholar 

  6. Mitch WE, Goldberg AL: Mechanisms of muscle wasting: the role of the ubiquitin-proteasome pathway. N Engl J Med 1996, 335:1897–1905.

    Article  PubMed  CAS  Google Scholar 

  7. Thompson GN, Francis DE, Halliday D: Acute illness in maple syrup urine disease: dynamics of protein metabolism and implications for management. J Pediatr 1991, 119:35–41.

    Article  PubMed  CAS  Google Scholar 

  8. Chang HR, Bistrian B: The role of cytokines in the catabolic consequences of infection and injury. JPEN J Parenter Enteral Nutr 1998, 22:156–166.

    Article  PubMed  CAS  Google Scholar 

  9. Kamei A, Takashima S, Chan F, Becker LE: Abnormal dendritic development in maple syrup urine disease. Pediatr Neurol 1992, 8:145–147.

    Article  PubMed  CAS  Google Scholar 

  10. Duffell SJ, Harper PA, Healy PJ, Dennis JA: Congenital hypomyelinogenesis of Hereford calves. Vet Rec 1988, 123:423–424.

    PubMed  CAS  Google Scholar 

  11. Prensky AL, Moser HW: Brain lipids, proteolipids, and free amino acids in maple syrup urine disease. J Neurochem 1966, 13:863–874.

    Article  PubMed  CAS  Google Scholar 

  12. Taketomi T, Kunishita T, Hara A, Mizushima S: Abnormal protein and lipid compositions of the cerebral myelin of a patient with maple syrup urine disease. Jpn J Exp Med 1983, 53:109–116.

    PubMed  CAS  Google Scholar 

  13. Crawford MA, Bloom M, Broadhurst CL, et al.: Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids 1999, 34(suppl):S39-S47. A clear and insightful discussion on the biologic importance of cerebral lipid composition written from an evolutionary and anthropologic, rather than molecular, perspective.

    Article  PubMed  CAS  Google Scholar 

  14. Bazan NG, Scott BL: Dietary omega-3 fatty acids and accumulation of docosahexaenoic acid in rod photoreceptor cells of the retina and at synapses. Ups J Med Sci 1990, 48(suppl):97–107.

    CAS  Google Scholar 

  15. Itokazu N, Ikegaya Y, Nishikawa M, Matsuki N: Bidirectional actions of docosahexaenoic acid on hippocampal neurotransmissions in vivo. Brain Res 2000, 862:211–216.

    Article  PubMed  CAS  Google Scholar 

  16. Davidson BC, Cantrill RC, Kurstjens NP, Patton J: Polyenoic fatty acid deprivation of juvenile cats modulates 3H-dopamine release from presynaptic receptors in caudate slices. In Vivo 1988, 2:295–298.

    PubMed  CAS  Google Scholar 

  17. Kitajka K, Puskas LG, Zvara A, et al.: The role of n-3 polyunsaturated fatty acids in brain: modulation of rat brain gene expression by dietary n-3 fatty acids. Proc Natl Acad Sci U S A 2002, 99:2619–2624. Using microarray technology to categorize messenger RNA expression patterns in brain, Kitajka et al. show profound alterations in transcriptional regulation in omega-3 fatty acid deficient animals, with over 60 brain-restricted genes showing ±threefold change in expression.

    Article  PubMed  CAS  Google Scholar 

  18. Champoux M, Hibbeln JR, Shannon C, et al.: Fatty acid formula supplementation and neuromotor development in rhesus monkey neonates. Pediatr Res 2002, 51:273–281. In a living primate, omega-3 fatty acid deficiency, as an isolated variable, alters behavior of the mature animal.

    Article  PubMed  CAS  Google Scholar 

  19. Young C, Gean PW, Chiou LC, Shen YZ: Docosahexaenoic acid inhibits synaptic transmission and epileptiform activity in the rat hippocampus. Synapse 2000, 37:90–94.

    Article  PubMed  CAS  Google Scholar 

  20. Nii T, Segawa H, Taketani Y, et al.: Molecular events involved in up-regulating human Na+-independent neutral amino acid-transporter LAT1 during T-cell activation. Biochem J 2001, 358:693–704.

    Article  PubMed  CAS  Google Scholar 

  21. Wajner M, Coelho DM, Barschak AG, et al.: Reduction of large neutral amino acid concentrations in plasma and CSF of patients with maple syrup urine disease during crises. J Inherit Metab Dis 2000, 23:505–512. The metabolic disturbance of MSD is more accurately described by the simultaneous depletion of multiple amino acids, essential and nonessential, as leucine and aKIC concentrations rise.

    Article  PubMed  CAS  Google Scholar 

  22. Chace DH, Hillman SL, Millington DS, et al.: Rapid diagnosis of maple syrup urine disease in blood spots from newborns by tandem mass spectrometry. Clin Chem 1995, 41:62–68.

    PubMed  CAS  Google Scholar 

  23. Naylor EW, Guthrie R: Newborn screening for maple syrup urine disease (branched-chain ketoaaciduria). Pediatr 1978, 61:262–266.

    CAS  Google Scholar 

  24. Araujo P, Wassermann GF, Tallini K, et al.: Reduction of large neutral amino acid levels in plasma and brain of hyperleucinemic rats. Neurochem Int 2001, 38:529–537. A carefully-designed study demonstrating the predicted abnormal amino acid transport phenomena in situ, demonstrating that in addition to blocked influx, enhanced efflux of LNAAs is a mechanism of their depletion by high leucine.

    Article  PubMed  CAS  Google Scholar 

  25. Banos G, Daniel PM, Moorhouse SR, Pratt OE: Inhibition of entry of some amino acids into the brain, with observations on mental retardation in the aminoacidurias. Psychol Med 1974, 4:262–269.

    PubMed  CAS  Google Scholar 

  26. Yudkoff M, Daikhin Y, Nissim I, et al.: Inhibition of astrocyte glutamine production by alpha-ketoisocaproic acid. J Neurochem 1994, 63:1508–1515.

    Article  PubMed  CAS  Google Scholar 

  27. Meier C, Ristic Z, Klauser S, Verrey F: Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO J 2002, 21:580–589.

    Article  PubMed  CAS  Google Scholar 

  28. Zielke HR, Zielke CL, Baab PJ, Collins RM: Large neutral amino acids auto exchange when infused by microdialysis into the rat brain: implication for maple syrup urine disease and phenylketonuria. Neurochem Int 2002, 40:347–354. The important property of heteroexchange, or “trans-stimulation,” is demonstrated in vivo.

    Article  PubMed  Google Scholar 

  29. Smith QR, Stoll J: Blood-brain barrier amino acid transport. In Introduction to the Blood-brain Barrier: Methodology, Biology, and Pathology. Edited by Pardridge WM. Cambridge: Cambridge University Press; 1998. A clear and concise description of BBB transport of the LNAAs mediated by LAT1, written by two pioneers in the field. A complete list of kinetic parameters (Km, Vmax, and influx rates) is provided.

    Google Scholar 

  30. Zielke HR, Huang Y, Baab PJ, et al.: Effect of alphaketoisocaproate and leucine on the in vivo oxidation of glutamate and glutamine in the rat brain. Neurochem Res 1997, 22:1159–1166.

    Article  PubMed  CAS  Google Scholar 

  31. Zielke HR, Huang Y, Tildon JT, et al.: Elevation of amino acids in the interstitial space of the rat brain following infusion of large neutral amino and keto acids by microdialysis: alpha-ketoisocaproate infusion. Dev Neurosci 1996, 18:420–425.

    PubMed  CAS  Google Scholar 

  32. McManus ML, Churchwell KB, Strange K: Regulation of cell volume in health and disease. N Engl J Med 1995, 333:1260–1266.

    Article  PubMed  CAS  Google Scholar 

  33. Paredes A, McManus M, Kwon HM, Strange K: Osmoregulation of Na(+)-inositol cotransporter activity and mRNA levels in brain glial cells. Am J Physiol 1992, 263:C1282-C1288.

    PubMed  CAS  Google Scholar 

  34. Hertz L, Chen Y, Spatz M: Involvement of non-neuronal brain cells in AVP-mediated regulation of water space at the cellular, organ, and whole-body level. J Neurosci Res 2000, 62:480–490.

    Article  PubMed  CAS  Google Scholar 

  35. Franchi-Gazzola R, Visigalli R, Dall’Asta V, et al.: Amino acid depletion activates TonEBP and sodium-coupled inositol transport. Am J Physiol Cell Physiol 2001, 280:C1465-C1474.

    PubMed  CAS  Google Scholar 

  36. Bussolati O, Dall’Asta V, Franchi-Gazzola R, et al.: The role of system A for neutral amino acid transport in the regulation of cell volume. Mol Membr Biol 2001, 18:27–38.

    Article  PubMed  CAS  Google Scholar 

  37. Sarfaraz D, Fraser CL: Effects of arginine vasopressin on cell volume regulation in brains astrocyte in culture. Am J Physiol 1999, 276:E596.

    PubMed  CAS  Google Scholar 

  38. Guyton AC, Hall JE: Integration of renal mechanisms for control of blood volume and extracellular fluid volume. In Textbook of Medical Physiology, edn 9. Edited by Guyton AC, Hall JE. Philadelphia: WB Saunders Company; 1996.

    Google Scholar 

  39. DePasquale M, Patlak CS, Cserr HF: Brain ion and volume regulation during acute hypernatremia in Brattleboro rats. Am J Physiol (Lond) 1989, 256:F1059-F1064.

    CAS  Google Scholar 

  40. Kroll M, Juhler M, Lindholm J: Hyponatraemia in acute brain disease. J Intern Med 1992, 232:291–297.

    Article  PubMed  CAS  Google Scholar 

  41. Kaufman S: Phenylketonuria and its variants. In Tetrahydrobiopterin: Basic Biochemistry and Role in Human Disease. Baltimore: Johns Hopkins University Press; 1997.

    Google Scholar 

  42. Pratt OE: A new approach to the treatment of phenylketonuria. J Ment Defic Res 1980, 24:203–217.

    PubMed  CAS  Google Scholar 

  43. Surtees R, Blau N: The neurochemistry of phenylketonuria. Eur J Pediatr 2000, 159(suppl):S109-S113. A modern perspective on earlier reviews by Pratt [42] and Kaufman [41].

    Article  PubMed  CAS  Google Scholar 

  44. Andrade JP, Castanheira-Vale AJ, Paz-Dias PG, et al.: The dendritic trees of neurons from the hippocampal formation of protein-deprived adult rats: a quantitative Golgi study. Exp Brain Res 1996, 109:419–433.

    Article  PubMed  CAS  Google Scholar 

  45. Andrade JP, Castanheira-Vale AJ, Madeira MD: Time scale and extent of neuronal and synaptic loss in the hippocampal formation of malnourished adult rats. Brain Res 1996, 718:1–12.

    Article  PubMed  CAS  Google Scholar 

  46. Huttenlocher PR: The neuropathology of phenylketonuria: human and animal studies. Eur J Padiatr 2000, 159(suppl):S102-S106.

    Article  Google Scholar 

  47. Royland J, Konat GW, Kanoh M, Wiggins RC: Down regulation of myelin-specific mRNAs in the mechanism of hypomyelination in the undernourished developing brain. Brain Res Dev Brain Res 1992, 65:223–226.

    Article  PubMed  CAS  Google Scholar 

  48. Teicher MH, Andersen SL, Navalta CP, et al.: Neuropsychiatric disorders of childhood and adolescence. In In Neuropsychiatry and Clinical Neurosciences, edn 4. Edited by Yudofsky SC, Hales RE. Washington, DC: American Psychiatric Publishing; 2002.

    Google Scholar 

  49. Lykkelund C, Nielsen JB, Lou HC, et al.: Increased neurotransmitter biosynthesis in phenylketonuria induced by phenylalanine restriction or by supplementation of unrestricted diet with large amounts of tyrosine. Eur J Pediatr 1988, 148:238–245.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strauss, K.A., Morton, D.H. Branched-chain ketoacyl dehydrogenase deficiency: Maple syrup disease. Curr Treat Options Neurol 5, 329–341 (2003). https://doi.org/10.1007/s11940-003-0039-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11940-003-0039-3

Keywords

Navigation