Skip to main content
Log in

METTL3-deficiency Suppresses Neural Apoptosis to Induce Protective Effects in Cerebral I/R Injury via Inhibiting RNA m6A Modifications: A Pre-clinical and Pilot Study

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

N6-Methyladenosine (m6A) RNA methylation involves in regulating the initiation, progression and aggravation of cerebral ischemia-reperfusion (I/R) injury, however, the detailed functions and mechanisms by which m6A drives cerebral I/R injury are not fully understood. This study found that methyltransferase-like 3 (METTL3) m6A-dependently regulated cerebral I/R injury trough regulating a novel LncRNA ABHD11-AS1/miR-1301-3p/HIF1AN/HIF-1α axis. Specifically, the middle cerebral artery occlusion (MCAO)/reperfusion mice models and glucose deprivation (OGD)/reoxygenation (RX) astrocyte cell models were respectively established, and we verified that METTL3, ABHD11-AS1 and HIF1AN were upregulated, whereas miR-1301-3p and HIF-1α were downregulated in both MCAO/reperfusion mice tissues and OGD/RX astrocytes. Mechanical experiments confirmed that METTL3 m6A dependently increased stability and expression levels of ABHD11-AS1, and elevated ABHD11-AS1 sponged miR-1301-3p to upregulate HIF1AN, resulting in the downregulation of HIF-1α. Moreover, silencing of METTL3 rescued MCAO/reperfusion and OGD/RX-induced oxidative stress-associated cell apoptosis and cell cycle arrest in both mice brain tissues in vivo and the mouse primary astrocytes in vitro, which were abrogated by overexpressing ABHD11-AS1 and downregulating miR-1301-3p. Taken together, our study firstly reported a novel METTL3/m6A/ ABHD11-AS1/miR-1301-3p/HIF1AN/HIF-1α signaling cascade in regulating the progression of cerebral I/R injury, and future work will focus on investigating whether the above genes can be used as biomarkers for the treatment of cerebral I/R injury by performing clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rai SN, Dilnashin H, Birla H, Singh SS, Zahra W, Rathore AS et al (2019) The role of PI3K/Akt and ERK in Neurodegenerative Disorders. Neurotox Res 35(3):775–795. https://doi.org/10.1007/s12640-019-0003-y

    Article  PubMed  CAS  Google Scholar 

  2. Rai SN, Singh P, Steinbusch HWM, Vamanu E, Ashraf G, Singh MP (2021) The role of vitamins in neurodegenerative disease: an update. Biomedicines 9. https://doi.org/10.3390/biomedicines9101284

  3. Li C, Sun G, Chen B, Xu L, Ye Y, He J et al (2021) Nuclear receptor coactivator 4-mediated ferritinophagy contributes to cerebral ischemia-induced ferroptosis in ischemic stroke. Pharmacol Res 174:105933. https://doi.org/10.1016/j.phrs.2021.105933

    Article  PubMed  CAS  Google Scholar 

  4. Xu X, Gao W, Li L, Hao J, Yang B, Wang T et al (2021) Annexin A1 protects against cerebral ischemia-reperfusion injury by modulating microglia/macrophage polarization via FPR2/ALX-dependent AMPK-mTOR pathway. J Neuroinflammation 18(1):119. https://doi.org/10.1186/s12974-021-02174-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zhang Y, Zhang Y, Jin XF, Zhou XH, Dong XH, Yu WT et al (2019) The role of Astragaloside IV against Cerebral Ischemia/Reperfusion Injury: suppression of apoptosis via Promotion of P62-LC3-Autophagy. Molecules 24(9). https://doi.org/10.3390/molecules24091838

  6. Liu W, Miao Y, Zhang L, Xu X, Luan Q (2020) MiR-211 protects cerebral ischemia/reperfusion injury by inhibiting cell apoptosis. Bioengineered 11(1):189–200. https://doi.org/10.1080/21655979.2020.1729322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Zhao Y, Ding M, Yan F, Yin J, Shi W, Yang N et al (2022) Inhibition of the JAK2/STAT3 pathway and cell cycle re-entry contribute to the protective effect of remote ischemic pre-conditioning of rat hindlimbs on cerebral ischemia/reperfusion injury. CNS Neurosci Ther. https://doi.org/10.1111/cns.14023

    Article  PubMed  PubMed Central  Google Scholar 

  8. Guan X, Li Z, Zhu S, Cheng M, Ju Y, Ren L et al (2021) Galangin attenuated cerebral ischemia-reperfusion injury by inhibition of ferroptosis through activating the SLC7A11/GPX4 axis in gerbils. Life Sci 264:118660. https://doi.org/10.1016/j.lfs.2020.118660

    Article  PubMed  CAS  Google Scholar 

  9. Wang P, Cui Y, Ren Q, Yan B, Zhao Y, Yu P et al (2021) Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis. Cell Death Dis 12(5):447. https://doi.org/10.1038/s41419-021-03725-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Liu X, Zhang M, Liu H, Zhu R, He H, Zhou Y et al (2021) Bone marrow mesenchymal stem cell-derived exosomes attenuate cerebral ischemia-reperfusion injury-induced neuroinflammation and pyroptosis by modulating microglia M1/M2 phenotypes. Exp Neurol 341:113700. https://doi.org/10.1016/j.expneurol.2021.113700

    Article  PubMed  CAS  Google Scholar 

  11. Sun R, Peng M, Xu P, Huang F, Xie Y, Li J et al (2020) Low-density lipoprotein receptor (LDLR) regulates NLRP3-mediated neuronal pyroptosis following cerebral ischemia/reperfusion injury. J Neuroinflammation 17(1):330. https://doi.org/10.1186/s12974-020-01988-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Li X, Cheng S, Hu H, Zhang X, Xu J, Wang R et al (2020) Progranulin protects against cerebral ischemia-reperfusion (I/R) injury by inhibiting necroptosis and oxidative stress. Biochem Biophys Res Commun 521(3):569–576. https://doi.org/10.1016/j.bbrc.2019.09.111

    Article  PubMed  CAS  Google Scholar 

  13. Liu H, Wu X, Luo J, Zhao L, Li X, Guo H et al (2020) Adiponectin peptide alleviates oxidative stress and NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/GSK-3β. Exp Neurol 329:113302. https://doi.org/10.1016/j.expneurol.2020.113302

    Article  PubMed  CAS  Google Scholar 

  14. Franke M, Bieber M, Kraft P, Weber ANR, Stoll G, Schuhmann MK (2021) The NLRP3 inflammasome drives inflammation in ischemia/reperfusion injury after transient middle cerebral artery occlusion in mice. Brain Behav Immun 92:223–233. https://doi.org/10.1016/j.bbi.2020.12.009

    Article  PubMed  CAS  Google Scholar 

  15. Yao L, Chen H, Wu Q, Xie K (2019) Hydrogen-rich saline alleviates inflammation and apoptosis in myocardial I/R injury via PINK-mediated autophagy. Int J Mol Med 44(3):1048–1062. https://doi.org/10.3892/ijmm.2019.4264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Diao MY, Zhu Y, Yang J, Xi SS, Wen X, Gu Q et al (2020) Hypothermia protects neurons against ischemia/reperfusion-induced pyroptosis via m6A-mediated activation of PTEN and the PI3K/Akt/GSK-3β signaling pathway. Brain Res Bull 159:25–31. https://doi.org/10.1016/j.brainresbull.2020.03.011

    Article  PubMed  CAS  Google Scholar 

  17. Hou L, Li S, Li S, Wang R, Zhao M, Liu X (2022) FTO inhibits oxidative stress by mediating m6A demethylation of Nrf2 to alleviate cerebral ischemia/reperfusion injury. J Physiol Biochem. https://doi.org/10.1007/s13105-022-00929-x

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zheng L, Tang X, Lu M, Sun S, Xie S, Cai J et al (2020) microRNA-421-3p prevents inflammatory response in cerebral ischemia/reperfusion injury through targeting m6A reader YTHDF1 to inhibit p65 mRNA translation. Int Immunopharmacol 88:106937. https://doi.org/10.1016/j.intimp.2020.106937

    Article  PubMed  CAS  Google Scholar 

  19. Si W, Li Y, Ye S, Li Z, Liu Y, Kuang W et al (2020) Methyltransferase 3 mediated miRNA m6A methylation promotes stress granule formation in the early stage of Acute ischemic stroke. Front Mol Neurosci 13:103. https://doi.org/10.3389/fnmol.2020.00103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Li YJ, Xu QW, Xu CH, Li WM (2022) MSC promotes the secretion of Exosomal miR-34a-5p and improve intestinal barrier function through METTL3-Mediated Pre-miR-34A m(6)a modification. Mol Neurobiol 59(8):5222–5235. https://doi.org/10.1007/s12035-022-02833-3

    Article  PubMed  CAS  Google Scholar 

  21. Wang X, Li Y, Li J, Li S, Wang F (2023) Mechanism of METTL3-Mediated m(6)a modification in Cardiomyocyte Pyroptosis and Myocardial Ischemia-Reperfusion Injury. Cardiovasc Drugs Ther 37(3):435–448. https://doi.org/10.1007/s10557-021-07300-0

    Article  PubMed  CAS  Google Scholar 

  22. Xiang S, Wang Y, Lei D, Luo Y, Peng D, Zong K et al (2023) Donor graft METTL3 gene transfer ameliorates rat liver transplantation ischemia-reperfusion injury by enhancing HO-1 expression in an m(6)A-dependent manner. Clin Immunol 251:109325. https://doi.org/10.1016/j.clim.2023.109325

    Article  PubMed  CAS  Google Scholar 

  23. Tang J, Tang QX, Liu S (2023) METTL3-modified lncRNA-SNHG8 binds to PTBP1 to regulate ALAS2 expression to increase oxidative stress and promote myocardial infarction. Mol Cell Biochem 478(6):1217–1229. https://doi.org/10.1007/s11010-022-04570-6

    Article  PubMed  CAS  Google Scholar 

  24. Cui Y, Zhang C, Ma S, Li Z, Wang W, Li Y et al (2021) RNA m6A demethylase FTO-mediated epigenetic up-regulation of LINC00022 promotes tumorigenesis in esophageal squamous cell carcinoma. J Exp Clin Cancer Res 40(1):294. https://doi.org/10.1186/s13046-021-02096-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Liu HT, Zou YX, Zhu WJ, Sen L, Zhang GH, Ma RR et al (2022) lncRNA THAP7-AS1, transcriptionally activated by SP1 and post-transcriptionally stabilized by METTL3-mediated m6A modification, exerts oncogenic properties by improving CUL4B entry into the nucleus. Cell Death Differ 29(3):627–641. https://doi.org/10.1038/s41418-021-00879-9

    Article  PubMed  CAS  Google Scholar 

  26. Zuo X, Chen Z, Gao W, Zhang Y, Wang J, Wang J et al (2020) M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. J Hematol Oncol 13(1). https://doi.org/10.1186/s13045-019-0839-x

  27. Lu J, Xu F, Lu H (2020) LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53. Life Sci 260:118305. https://doi.org/10.1016/j.lfs.2020.118305

    Article  PubMed  CAS  Google Scholar 

  28. Lu Y, Han Y, He J, Zhou B, Fang P, Li X (2020) LncRNA FOXD3-AS1 knockdown protects against cerebral ischemia/reperfusion injury via miR-765/BCL2L13 axis. Biomed Pharmacother 132:110778. https://doi.org/10.1016/j.biopha.2020.110778

    Article  PubMed  CAS  Google Scholar 

  29. Liang J, Wang Q, Li JQ, Guo T, Yu D (2020) Long non-coding RNA MEG3 promotes cerebral ischemia-reperfusion injury through increasing pyroptosis by targeting miR-485/AIM2 axis. Exp Neurol 325:113139. https://doi.org/10.1016/j.expneurol.2019.113139

    Article  PubMed  CAS  Google Scholar 

  30. Zhang W, Huang X, Shi J (2021) EZH2-mediated lncRNA ABHD11-AS1 promoter regulates the progression of ovarian cancer by targeting miR-133a-3p Anticancer Drugs, 32(3): p. 269–277.https://doi.org/10.1097/cad.0000000000001039

  31. Hou S, Zhuang YY, Lin QY, Chen Z, Zhao HG, Zhang L et al (2021) Overexpression of serum lncRNA-ABHD11-AS1 as poor prognosis of patients with papillary thyroid carcinoma. Exp Mol Pathol 121:104658. https://doi.org/10.1016/j.yexmp.2021.104658

    Article  PubMed  CAS  Google Scholar 

  32. Liu B, Wang W, Sun S, Ding H, Lan L, Li X et al (2020) Knockdown of lncRNA ABHD11-AS1 suppresses the tumorigenesis of pancreatic Cancer via sponging miR-1231. Onco Targets Ther 13:11347–11358. https://doi.org/10.2147/ott.S259598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Xue L, Li J, Lin Y, Liu D, Yang Q, Jian J et al (2021) m(6) A transferase METTL3-induced lncRNA ABHD11-AS1 promotes the Warburg effect of non-small-cell lung cancer J Cell Physiol, 236(4): p. 2649–2658.https://doi.org/10.1002/jcp.30023

  34. Kong X, Duan Y, Sang Y, Li Y, Zhang H, Liang Y et al (2019) LncRNA-CDC6 promotes breast cancer progression and function as ceRNA to target CDC6 by sponging microRNA-215. J Cell Physiol 234(6):9105–9117. https://doi.org/10.1002/jcp.27587

    Article  PubMed  CAS  Google Scholar 

  35. Wang H, Huo X, Yang XR, He J, Cheng L, Wang N et al (2017) STAT3-mediated upregulation of lncRNA HOXD-AS1 as a ceRNA facilitates liver cancer metastasis by regulating SOX4. Mol Cancer 16(1):136. https://doi.org/10.1186/s12943-017-0680-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zhang H, Bian C, Tu S, Yin F, Guo P, Zhang J et al (2021) Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in human aortic dissection. BMC Genomics 22(1):724. https://doi.org/10.1186/s12864-021-08012-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wen J, Wang H, Dong T, Gan P, Fang H, Wu S et al (2019) STAT3-induced upregulation of lncRNA ABHD11-AS1 promotes tumour progression in papillary thyroid carcinoma by regulating miR-1301-3p/STAT3 axis and PI3K/AKT signalling pathway. Cell Prolif 52(2):e. https://doi.org/10.1111/cpr.12569

    Article  CAS  Google Scholar 

  38. Peng X, Yan B, Shen Y (2018) MiR-1301-3p inhibits human breast cancer cell proliferation by regulating cell cycle progression and apoptosis through directly targeting ICT1. Breast Cancer 25(6):742–752. https://doi.org/10.1007/s12282-018-0881-5

    Article  PubMed  Google Scholar 

  39. Xu G, Wang H, Yuan D, Yao J, Meng L, Li K et al (2020) RUNX1-activated upregulation of lncRNA RNCR3 promotes cell proliferation, invasion, and suppresses apoptosis in colorectal cancer via miR-1301-3p/AKT1 axis in vitro and in vivo. Clin Transl Oncol 22(10):1762–1777. https://doi.org/10.1007/s12094-020-02335-5

    Article  PubMed  CAS  Google Scholar 

  40. Yu L, Gao Y, Ji B, Feng Z, Li T, Luan W (2021) CTCF-induced upregulation of LINC01207 promotes gastric cancer progression via miR-1301-3p/PODXL axis. Dig Liver Dis 53(4):486–495. https://doi.org/10.1016/j.dld.2020.12.006

    Article  PubMed  CAS  Google Scholar 

  41. Lang Z, Fan X, Lin H, Qiu L, Zhang J, Gao C (2021) Silencing of SNHG6 alleviates hypoxia/reoxygenation-induced cardiomyocyte apoptosis by modulating miR-135a-5p/HIF1AN to activate Shh/Gli1 signalling pathway. J Pharm Pharmacol 73(1):22–31. https://doi.org/10.1093/jpp/rgaa064

    Article  PubMed  Google Scholar 

  42. Yin Y, Lu X, Yang M, Shangguan J, Zhang Y (2021) Inhibition of lncRNA MALAT1 reduces myocardial ischemia-reperfusion injury of rat cardiomyocytes through regulating the miR-135a-5p/HIF1AN axis. J Gene Med e3392. https://doi.org/10.1002/jgm.3392

  43. Wang J, Hong Z, Zeng C, Yu Q, Wang H (2014) NADPH oxidase 4 promotes cardiac microvascular angiogenesis after hypoxia/reoxygenation in vitro. Free Radic Biol Med 69:278–288. https://doi.org/10.1016/j.freeradbiomed.2014.01.027

    Article  PubMed  CAS  Google Scholar 

  44. Yu L, Zhang Y, Zhao X, Wan H, He Y, Jin W (2021) Guhong Injection alleviates cerebral ischemia-reperfusion Injury via the PKC/HIF-1α pathway in rats. Front Pharmacol 12:716121. https://doi.org/10.3389/fphar.2021.716121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ferreira BL, Leite GGF, Brunialti MKC, Assuncao M, Azevedo LCP, Freitas F et al (2021) HIF-1α and Hypoxia Responsive genes are differentially expressed in Leukocytes from Survivors and Non-Survivors Patients during Clinical Sepsis. Shock 56(1):80–91. https://doi.org/10.1097/shk.0000000000001694

    Article  PubMed  CAS  Google Scholar 

  46. Yang YW, Meng X, Meng YY, Tang HK, Cheng MH, Zhang ZQ et al (2021) ceRNA regulatory network of FIH inhibitor as a radioprotector for gastrointestinal toxicity by activating the HIF-1 pathway. Mol Ther Nucleic Acids 25:173–185. https://doi.org/10.1016/j.omtn.2021.05.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Wang H, Zheng X, Jin J, Zheng L, Guan T, Huo Y et al (2020) LncRNA MALAT1 silencing protects against cerebral ischemia-reperfusion injury through miR-145 to regulate AQP4. J Biomed Sci 27(1):40. https://doi.org/10.1186/s12929-020-00635-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Du Y, Hou G, Zhang H, Dou J, He J, Guo Y et al (2018) SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Res 46(10):5195–5208. https://doi.org/10.1093/nar/gky156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zhou RS, Zhang EX, Sun QF, Ye ZJ, Liu JW, Zhou DH et al (2019) Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue. BMC Cancer 19(1):779. https://doi.org/10.1186/s12885-019-5983-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Liu Y, Wang LL, Chen S, Zong ZH, Guan X, Zhao Y (2018) LncRNA ABHD11-AS1 promotes the development of endometrial carcinoma by targeting cyclin D1. J Cell Mol Med 22(8):3955–3964. https://doi.org/10.1111/jcmm.13675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Gang Huang designed the experiments, conducted the investigations and drafted the manuscript. Yuda Qiu and Yafei Fan helped to collect, analyze and visualize the data, and they also provided technical support for this study. Jianfeng Liu was the correspondence author who provided guidance for this study, and designed the experiments, drafted the manuscript and proofread the final version of the paper for potential publication.

Corresponding author

Correspondence to Jianfeng Liu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of Interest

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

11064_2023_4015_MOESM1_ESM.jpg

Supplementary Figure S1. The mRNA levels of HIF1AN, HIF-1α, Nox4 and miR-1201-3p were respectively examined by performing Real-Time qPCR analysis in the (A-D) mice astrocytes and (E-H) mice brain tissues. Each experiment repeated for at least 3 times, and *P < 0.05 was considered as statistical significance.

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Qiu, Y., Fan, Y. et al. METTL3-deficiency Suppresses Neural Apoptosis to Induce Protective Effects in Cerebral I/R Injury via Inhibiting RNA m6A Modifications: A Pre-clinical and Pilot Study. Neurochem Res 49, 85–98 (2024). https://doi.org/10.1007/s11064-023-04015-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04015-6

Keywords

Navigation