Skip to main content

Advertisement

Log in

The Role of PI3K/Akt and ERK in Neurodegenerative Disorders

  • Review Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Disruption of Akt and Erk-mediated signal transduction significantly contributes in the pathogenesis of various neurodegenerative diseases (NDs), such as Parkinson’s disease, Alzheimer’s diseases, Huntington’s disease, and many others. These regulatory proteins serve as the regulator of cell survival, motility, transcription, metabolism, and progression of the cell cycle. Therefore, targeting Akt and Erk pathway has been proposed as a reasonable approach to suppress ND progression. This review has emphasized on involvement of Akt/Erk cascade in the neurodegeneration. Akt has been reported to regulate neuronal toxicity through its various substrates like FOXos, GSK3β, and caspase-9 etc. Akt is also involved with PI3K in signaling pathway to mediate neuronal survival. ERK is another kinase which also regulates proliferation, differentiation, and survival of the neural cell. There has also been much progress in developing a therapeutic molecule targeting Akt and Erk signaling. Therefore, improved understanding of the molecular mechanism behind the regulatory aspect of Akt and Erk networks can make strong impact on exploration of the neurodegenerative disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdulkareem IH, Blair M (2013) Phosphatase and tensin homologue deleted on chromosome 10 Nigerian medical journal. J Niger Med Assoc 54:79

    Article  Google Scholar 

  • Ahn NG, Seger R, Bratlien R, Diltz C, Tonks N, Krebs E (1991) Multiple components in an epidermal growth factor-stimulated protein kinase cascade. In vitro activation of a myelin basic protein/microtubule-associated protein 2 kinase. J Biol Chem 266:4220–4227

    PubMed  CAS  Google Scholar 

  • Alessandrini A, Namura S, Moskowitz MA, Bonventre JV (1999) MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc Natl Acad Sci 96:12866–12869

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Alessi DR, Saito Y, Campbell DG, Cohen P, Sithanandam G, Rapp U, Ashworth A, Marshall CJ, Cowley S (1994) Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1. EMBO J 13:1610–1619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings B (1996a) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:6541–6551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alessi DR, Barry Caudwell F, Andjelkovic M, Hemmings BA, Cohen P (1996b) Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett 399:333–338

    Article  PubMed  CAS  Google Scholar 

  • Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr Biol 7:261–269

    Article  PubMed  CAS  Google Scholar 

  • Altiok S, Batt D, Altiok N, Papautsky A, Downward J, Roberts TM, Avraham H (1999) Heregulin induces phosphorylation of BRCA1 through phosphatidylinositol 3-kinase/AKT in breast cancer cells. J Biol Chem 274:32274–32278

    Article  PubMed  CAS  Google Scholar 

  • Andreadi CK, Howells LM, Atherfold PA, Manson MM (2006) Involvement of Nrf2, p38, B-Raf, and nuclear factor-κB, but not phosphatidylinositol 3-kinase, in induction of hemeoxygenase-1 by dietary polyphenols. Mol Pharmacol 69:1033–1040

    Article  PubMed  CAS  Google Scholar 

  • Apostol BL et al (2005) Mutant huntingtin alters MAPK signaling pathways in PC12 and striatal cells: ERK1/2 protects against mutant huntingtin-associated toxicity. Hum Mol Genet 15:273–285

    Article  PubMed  CAS  Google Scholar 

  • Aroeira RI, Sebastião AM, Valente CA (2015) BDNF, via truncated TrkB receptor, modulates GlyT1 and GlyT2 in astrocytes. Glia 63:2181–2197

    Article  PubMed  Google Scholar 

  • Bae JH, Schlessinger J (2010) Asymmetric tyrosine kinase arrangements in activation or autophosphorylation of receptor tyrosine kinases. Mol Cell 29:443–448

    Article  CAS  Google Scholar 

  • Bardai FH, D'Mello SR (2011) Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3β. J Neurosci 31:1746–1751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bayascas JR, Alessi DR (2005) Regulation of Akt/PKB Ser473 phosphorylation. Mol Cell 18:143–145

    Article  PubMed  CAS  Google Scholar 

  • Bi G et al (2018) Therapeutic effect of transmembrane TAT-tCNTF via Erk and Akt activation using in vitro and in vivo models of Alzheimer’s disease. Int J Clin Exp Pathol 11:1855–1865

    PubMed  PubMed Central  Google Scholar 

  • Binder DK, Scharfman HE (2004) Mini review. Growth Factors 22:123–131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bodai L, Marsh JL (2012) A novel target for Huntington’s disease: ERK at the crossroads of signaling: the ERK signaling pathway is implicated in Huntington’s disease and its upregulation ameliorates pathology. Bioessays 34:142–148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bohush A, Niewiadomska G, Filipek A (2018) Role of mitogen activated protein kinase signaling in Parkinson’s disease. Int J Mol Sci 19:2973

    Article  PubMed Central  CAS  Google Scholar 

  • Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and-independent mechanisms. Science 286:1358–1362

    Article  PubMed  CAS  Google Scholar 

  • Borsello T, Forloni G (2007) JNK signalling: a possible target to prevent neurodegeneration. Curr Pharm Des 13:1875–1886

    Article  PubMed  CAS  Google Scholar 

  • Brazil DP, Park J, Hemmings BA (2002) PKB binding proteins: getting in on the Akt. Cell 111:293–303

    Article  PubMed  CAS  Google Scholar 

  • Brazil DP, Yang Z-Z, Hemmings BA (2004) Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29:233–242

    Article  PubMed  CAS  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  PubMed  CAS  Google Scholar 

  • Brunet A, Datta SR, Greenberg ME (2001) Transcription-dependent and-independent control of neuronal survival by the PI3K–Akt signaling pathway. Curr Opin Neurobiol 11:297–305

    Article  PubMed  CAS  Google Scholar 

  • Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP (2010) Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 13:1763–1811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calabresi P, Gubellini P, Picconi B, Centonze D, Pisani A, Bonsi P, Greengard P, Hipskind RA, Borrelli E, Bernardi G (2001) Inhibition of mitochondrial complex II induces a long-term potentiation of NMDA-mediated synaptic excitation in the striatum requiring endogenous dopamine. J Neurosci 21:5110–5120

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cao Q et al (2017) Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson's disease model mice through PI3K/Akt and ERK signaling pathways. Toxicol Appl Pharmacol 319:80–90

    Article  PubMed  Google Scholar 

  • Casarejos MJ, Perucho J, Gomez A, Muñoz MP, Fernandez-Estevez M, Sagredo O, Fernandez Ruiz J, Guzman M, de Yebenes JG, Mena MA (2013) Natural cannabinoids improve dopamine neurotransmission and tau and amyloid pathology in a mouse model of tauopathy. J Alzheimers Dis 35:525–539

    Article  PubMed  CAS  Google Scholar 

  • Cavanaugh JE (2004) Role of extracellular signal regulated kinase 5 in neuronal survival. Eur J Biochem 271:2056–2059

    Article  PubMed  CAS  Google Scholar 

  • Chen W-F et al (2017) Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinson's disease: involvement of PI3K/Akt and MEK/ERK signaling pathways. Phytomedicine 25:93–99

    Article  PubMed  CAS  Google Scholar 

  • Choi Y, Zhang J, Murga C, Yu H, Koller E, Monia BP, Gutkind JS, Li W (2002) PTEN, but not SHIP and SHIP2, suppresses the PI3K/Akt pathway and induces growth inhibition and apoptosis of myeloma cells. Oncogene 21:5289–5300

    Article  PubMed  CAS  Google Scholar 

  • Chuderland D, Konson A, Seger R (2008) Identification and characterization of a general nuclear translocation signal in signaling proteins. Mol Cell 31:850–861

    Article  PubMed  CAS  Google Scholar 

  • Cohen P (1999) The development and therapeutic potential of protein kinase inhibitors. Curr Opin Chem Biol 3:459–465

    Article  PubMed  CAS  Google Scholar 

  • Colucci-D'Amato L, Perrone-Capano C, di Porzio U (2003) Chronic activation of ERK and neurodegenerative diseases. Bioessays 25:1085–1095

    Article  PubMed  CAS  Google Scholar 

  • Cui W, Li W, Han R, Mak S, Zhang H, Hu S, Rong J, Han Y (2011a) PI3-K/Akt and ERK pathways activated by VEGF play opposite roles in MPP+-induced neuronal apoptosis. Neurochem Int 59:945–953

    Article  PubMed  CAS  Google Scholar 

  • Cui W, Li W, Zhao Y, Mak S, Gao Y, Luo J, Zhang H, Liu Y, Carlier PR, Rong J, Han Y (2011b) Preventing H2O2-induced apoptosis in cerebellar granule neurons by regulating the VEGFR-2/Akt signaling pathway using a novel dimeric antiacetylcholinesterase bis (12)-hupyridone. Brain Res 1394:14–23

    Article  PubMed  CAS  Google Scholar 

  • Cuny G (2009) Kinase inhibitors as potential therapeutics for acute and chronic neurodegenerative conditions. Curr Pharm Des 15:3919–3939

    Article  PubMed  CAS  Google Scholar 

  • Dagda RK, Zhu J, Chu CT (2009) Mitochondrial kinases in Parkinson’s disease: converging insights from neurotoxin and genetic models. Mitochondrion 9:289–298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deak M, Clifton AD, Lucocq JM, Alessi DR (1998) Mitogen-and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J 17:4426–4441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deshmukh M, Johnson EM Jr (1998) Evidence of a novel event during neuronal death: development of competence-to-die in response to cytoplasmic cytochrome c. Neuron 21:695–705

    Article  PubMed  CAS  Google Scholar 

  • Dhanasekaran N, Reddy EP (1998) Signaling by dual specificity kinases. Oncogene 17:1447–1455

    Article  PubMed  CAS  Google Scholar 

  • Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275:661–665

    Article  PubMed  CAS  Google Scholar 

  • Dyson JM, O'Malley CJ, Becanovic J, Munday AD, Berndt MC, Coghill ID, Nandurkar HH, Ooms LM, Mitchell CA (2001) The SH2-containing inositol polyphosphate 5-phosphatase, SHIP-2, binds filamin and regulates submembraneous actin. J Cell Biol 155:1065–1080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elstner M, Morris CM, Heim K, Bender A, Mehta D, Jaros E, Klopstock T, Meitinger T, Turnbull DM, Prokisch H (2011) Expression analysis of dopaminergic neurons in Parkinson’s disease and aging links transcriptional dysregulation of energy metabolism to cell death. Acta Neuropathol 122:75–86

    Article  PubMed  CAS  Google Scholar 

  • Faden AI, Wu J, Stoica BA, Loane DJ (2016) Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury. Br J Pharmacol 173:681–691

    Article  PubMed  CAS  Google Scholar 

  • Fayard E, Tintignac LA, Baudry A, Hemmings BA (2005) Protein kinase B/Akt at a glance. J Cell Sci 118:5675–5678

    Article  PubMed  CAS  Google Scholar 

  • Forlenza OV, Torres CA, Talib LL, de Paula VJ, Joaquim HP, Diniz BS, Gattaz WF (2011) Increased platelet GSK3B activity in patients with mild cognitive impairment and Alzheimer’s disease. J Psychiatr Res 45:220–224

    Article  PubMed  Google Scholar 

  • Fukunaga R, Hunter T (1997) MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J 16:1921–1933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerfen CR, Miyachi S, Paletzki R, Brown P (2002) D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J Neurosci 22:5042–5054

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gingras A-C, Kennedy SG, O’Leary MA, Sonenberg N, Hay N (1998) 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt (PKB) signaling pathway. Genes Dev 12:502–513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gines S, Ivanova E, Seong I-S, Saura CA, MacDonald ME (2003) Enhanced Akt signaling is an early pro-survival response that reflects N-methyl-D-aspartate receptor activation in Huntington's disease knock-in striatal cells. J Biol Chem 278:50514–50522

    Article  PubMed  CAS  Google Scholar 

  • van Golen CM, Schwab TS, Ignatoski KW, Ethier SP, Feldman EL (2001) PTEN/MMAC1 overexpression decreases insulin-like growth factor-I-mediated protection from apoptosis in neuroblastoma cells. Cell Growth Differ 12:371–378

    PubMed  Google Scholar 

  • Gómez N, Cohen P (1991) Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases. Nature 353:170–173

    Article  PubMed  Google Scholar 

  • Gómez-Santos C, Ferrer I, Reiriz J, Viñals F, Barrachina M, Ambrosio S (2002) MPP+ increases α-synuclein expression and ERK/MAP-kinase phosphorylation in human neuroblastoma SH-SY5Y cells. Brain Res 935:32–39

    Article  PubMed  Google Scholar 

  • Gonzalez FA, Raden DL, Davis RJ (1991) Identification of substrate recognition determinants for human ERK1 and ERK2 protein kinases. J Biol Chem 266:22159–22163

    PubMed  CAS  Google Scholar 

  • González-Polo RA, Soler G, Alvarez A, Fabregat I, Fuentes JM (2003) Vitamin E blocks early events induced by 1-methyl-4-phenylpyridinium (MPP+) in cerebellar granule cells. J Neurochem 84:305–315

    Article  PubMed  Google Scholar 

  • Gotoh Y, Nishida E (1995) Activation mechanism and function of the MAP kinase cascade. Mol Reprod Dev 42:486–492

    Article  PubMed  CAS  Google Scholar 

  • Grazia Spillantini M, Crowther RA, Jakes R, Hasegawa M (1998) Goedert M alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. In: Proceedings of the National Academy of Science. pp 6469–6473

  • Griffin RJ, Moloney A, Kelliher M, Johnston JA, Ravid R, Dockery P, O'Connor R, O'Neill C (2005) Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer’s disease pathology. J Neurochem 93:105–117

    Article  PubMed  CAS  Google Scholar 

  • Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ (1996) Activation of mitogen-activated protein kinase by ho role in cell survival following oxidant injury. J Biol Chem 271:4138–4142

    Article  PubMed  CAS  Google Scholar 

  • Hanada M, Feng J, Hemmings BA (2004) Structure, regulation and function of PKB/AKT—a major therapeutic target. Biochim Biophys Acta 1697:3–16

    Article  PubMed  CAS  Google Scholar 

  • Harris CA, Johnson EM (2001) BH3-only Bcl-2 family members are coordinately regulated by the JNK pathway and require Bax to induce apoptosis in neurons. J Biol Chem 276:37754–37760

    PubMed  CAS  Google Scholar 

  • Hashimoto M, Bar-on P, Ho G, Takenouchi T, Rockenstein E, Crews L, Masliah E (2004) β-Synuclein regulates Akt activity in neuronal cells a possible mechanism for neuroprotection in Parkinson′ s disease. J Biol Chem 279:23622–23629

    Article  PubMed  CAS  Google Scholar 

  • Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J, Pedraza-Chaverri J (2014) The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 26:2694–2701

    Article  PubMed  CAS  Google Scholar 

  • Hu M, Li F, Wang W (2018) Vitexin protects dopaminergic neurons in MPTP-induced Parkinson’s disease through Pi3K/Akt signaling pathway. Drug Des Devel Ther 12:565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hernandez F, Nido JD, Avila J, Villanueva N (2009) GSK3 inhibitors and disease. Mini Rev Med Chem 9:1024–1029

    Article  PubMed  CAS  Google Scholar 

  • Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, Pitstick R, Carlson GA, Lanier LM, Yuan LL, Ashe KH, Liao D (2010) Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68:1067–1081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang S-H, Wang J, Sui WH, Chen B, Zhang XY, Yan J, Geng Z, Chen ZY (2013) BDNF-dependent recycling facilitates TrkB translocation to postsynaptic density during LTP via a Rab11-dependent pathway. J Neurosci 33:9214–9230

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Humbert S et al (2002) The IGF-1/Akt pathway is neuroprotective in Huntington's disease and involves Huntingtin phosphorylation by Akt. Dev Cell 2:831–837

    Article  PubMed  CAS  Google Scholar 

  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, Huang Q, Qin J, Su B (2006) SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127:125–137

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal M, Sandoval H, Zhang K, Bayat V, Bellen H (2012) Probing mechanisms that underlie human neurodegenerative diseases in Drosophila. Annu Rev Genet 46:371–396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jakel RJ, Townsend JA, Kraft AD, Johnson JA (2007) Nrf2-mediated protection against 6-hydroxydopamine. Brain Res 1144:192–201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jerónimo-Santos A, Fonseca-Gomes J, Guimarães DA, Tanqueiro SR, Ramalho RM, Ribeiro JA, Sebastião AM, Diógenes MJ (2015) Brain-derived neurotrophic factor mediates neuroprotection against A β-induced toxicity through a mechanism independent on adenosine 2A receptor activation. Growth Factors 33:298–308

    Article  PubMed  CAS  Google Scholar 

  • Jiao S, Li Z (2011) Nonapoptotic function of BAD and BAX in long-term depression of synaptic transmission. Neuron 70:758–772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang SS, Kwon T, Do SI (1999) Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J Biol Chem 274:13085–13090

    Article  PubMed  CAS  Google Scholar 

  • Kanninen K, Malm TM, Jyrkkänen HK, Goldsteins G, Keksa-Goldsteine V, Tanila H, Yamamoto M, Ylä-Herttuala S, Levonen AL, Koistinaho J (2008) Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Mol Cell Neurosci 39:302–313

    Article  PubMed  CAS  Google Scholar 

  • Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10:381–391

    Article  PubMed  CAS  Google Scholar 

  • Kase MS, Persons A, Napier C (2017) Effects of chronic pramipexole on AMPA receptor trafficking and Akt/GSK-3β signaling in a rat model of Parkinson’s disease. The FASEB Journal 31.1_supplement lb587-lb587

  • Kim EK, Choi E-J (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802:396–405

    Article  PubMed  CAS  Google Scholar 

  • Kitagishi Y, Nakanishi A, Ogura Y, Matsuda S (2014) Dietary regulation of PI3K/AKT/GSK-3β pathway in Alzheimer’s disease. Alzheimers Res Ther 6:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou YS, Ueno I, Sakamoto A, Tong KI, Kim M, Nishito Y, Iemura SI, Natsume T, Ueno T, Kominami E, Motohashi H, Tanaka K, Yamamoto M (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12:213–223

    Article  PubMed  CAS  Google Scholar 

  • Kulich SM, Chu CT (2001) Sustained extracellular signal-regulated kinase activation by 6-hydroxydopamine: implications for Parkinson’s disease. J Neurochem 77:1058–1066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuruvilla R, Ye H, Ginty DD (2000) Spatially and functionally distinct roles of the PI3-K effector pathway during NGF signaling in sympathetic neurons. Neuron 27:499–512

    Article  PubMed  CAS  Google Scholar 

  • Kyriakis JM, App H, X-f Z, Banerjee P, Brautigan DL, Rapp UR, Avruch J (1992) Raf-1 activates MAP kinase-kinase. Nature 358:417–421

    Article  PubMed  CAS  Google Scholar 

  • Kyriakis J, Force T, Rapp U, Bonventre J, Avruch J (1993) Mitogen regulation of c-Raf-1 protein kinase activity toward mitogen-activated protein kinase-kinase. J Biol Chem 268:16009–16019

    PubMed  CAS  Google Scholar 

  • Lange-Carter CA, Pleiman CM, Gardner AM, Blumer KJ, Johnson GL (1993) A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 260:315–319

    Article  PubMed  CAS  Google Scholar 

  • Langston J, Langston E, Irwin I (1984) MPTP-induced parkinsonism in human and non-human primates—clinical and experimental aspects. Acta Neurol Scand Suppl 100:49–54

    PubMed  CAS  Google Scholar 

  • Lebrun B, Bariohay B, Moyse E, Jean A (2006) Brain-derived neurotrophic factor (BDNF) and food intake regulation: a minireview. Auton Neurosci 126:30–38

    Article  PubMed  CAS  Google Scholar 

  • Lefloch R, Pouysségur J, Lenormand P (2008) Single and combined silencing of ERK1 and ERK2 reveals their positive contribution to growth signaling depending on their expression levels. Mol Cell Biol 28:511–527

    Article  PubMed  CAS  Google Scholar 

  • Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu D, Yang X, Songyang Z (2000) Identification of CISK, a new member of the SGK kinase family that promotes IL-3-dependent survival. Curr Biol 10:1233–1236

    Article  PubMed  CAS  Google Scholar 

  • Luttrell LM, Daaka Y, Lefkowitz RJ (1999) Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol 11:177–183

    Article  PubMed  CAS  Google Scholar 

  • Malagelada C, Jin ZH, Greene LA (2008) RTP801 is induced in Parkinson's disease and mediates neuron death by inhibiting Akt phosphorylation/activation. J Neurosci 28:14363–14371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10:151–162

    Article  PubMed  CAS  Google Scholar 

  • Mazzoni IE, Saıd FA, Aloyz R, Miller FD, Kaplan D (1999) Ras regulates sympathetic neuron survival by suppressing the p53-mediated cell death pathway. J Neurosci 19:9716–9727

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, Füllgrabe J, Jackson A, Jimenez Sanchez M, Karabiyik C, Licitra F, Lopez Ramirez A, Pavel M, Puri C, Renna M, Ricketts T, Schlotawa L, Vicinanza M, Won H, Zhu Y, Skidmore J, Rubinsztein DC (2017) Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93:1015–1034

    Article  PubMed  CAS  Google Scholar 

  • Morris ME, Iansek R, Matyas TA, Summers JJ (1994) Ability to modulate walking cadence remains intact in Parkinson’s disease. J Neurol Neurosurg Psychiatry 57:1532–1534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morrison BE, Majdzadeh N, Zhang X, Lyles A, Bassel-Duby R, Olson EN, D'Mello SR (2006) Neuroprotection by histone deacetylase-related protein. Mol Cell Biol 26:3550–3564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murray B, Alessandrini A, Cole AJ, Yee AG, Furshpan EJ (1998) Inhibition of the p44/42 MAP kinase pathway protects hippocampal neurons in a cell-culture model of seizure activity. Proc Natl Acad Sci 95:11975–11980

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nah J, Yuan J, Jung Y-K (2015) Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol Cells 38:381–389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakaso K, Tajima N, Horikoshi Y, Nakasone M, Hanaki T, Kamizaki K, Matsura T (2014) The estrogen receptor β-PI3K/Akt pathway mediates the cytoprotective effects of tocotrienol in a cellular Parkinson's disease model. Biochim Biophys Acta (BBA)-Mol Basis Dis 1842:1303–1312

    Article  CAS  Google Scholar 

  • Naor Z, Benard O, Seger R (2000) Activation of MAPK cascades by G-protein-coupled receptors: the case of gonadotropin-releasing hormone receptor. Trends Endocrinol Metab 11:91–99

    Article  PubMed  CAS  Google Scholar 

  • Nataraj J, Manivasagam T, Thenmozhi AJ, Essa MM (2017) Neurotrophic effect of asiatic acid, a triterpene of centella asiatica against chronic 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine hydrochloride/probenecid mouse model of Parkinson’s disease: the role of MAPK, PI3K-Akt-GSK3β and mTOR signalling pathways. Neurochem Res 42:1354–1365

    Article  PubMed  CAS  Google Scholar 

  • Nishimoto S, Nishida E (2006) Mapk signalling: Erk5 versus erk1/2. EMBO Rep 7:782–786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Northwood IC, Gonzalez FA, Wartmann M, Raden DL, Davis RJ (1991) Isolation and characterization of two growth factor-stimulated protein kinases that phosphorylate the epidermal growth factor receptor at threonine 669. J Biol Chem 266:15266–15276

    PubMed  CAS  Google Scholar 

  • Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C (2010) Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat 31:763–780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orike N, Middleton G, Borthwick E, Buchman V, Cowen T, Davies AM (2001) Role of PI 3-kinase, Akt and Bcl-2–related proteins in sustaining the survival of neurotrophic factor–independent adult sympathetic neurons. J Cell Biol 154:995–1006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB (1999) NF-κB activation by tumour necrosis factor requires the Akt serine–threonine kinase. Nature 401:82–85

    Article  PubMed  CAS  Google Scholar 

  • Pap M, Cooper GM (1998) Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem 273:19929–19932

    Article  PubMed  CAS  Google Scholar 

  • Paradis S, Ruvkun G (1998) C. elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3K to the DAF-16 transcription factor. In: East Coast Worm Meeting

  • Parrish AB, Freel CD, Kornbluth S (2013) Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol 5:a008672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pariyar R et al (2017) Sulfuretin attenuates MPP+-induced neurotoxicity through Akt/GSK3β and ERK signaling pathways. Int J Mol Sci 18(12):2753

    Article  PubMed Central  CAS  Google Scholar 

  • Payne DM, Rossomando AJ, Martino P, Erickson AK, Her JH, Shabanowitz J, Hunt DF, Weber MJ, Sturgill TW (1991) Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). EMBO J 10:885–892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petit-Paitel A, Brau F, Cazareth J, Chabry J (2009) Involvment of cytosolic and mitochondrial GSK-3β in mitochondrial dysfunction and neuronal cell death of MPTP/MPP+-treated neurons. PLoS One 4:e5491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pettmann B, Henderson CE (1998) Neuronal cell death. Neuron 20:633–647

    Article  PubMed  CAS  Google Scholar 

  • Quesada A, Lee BY, Micevych PE (2008) PI3 kinase/Akt activation mediates estrogen and IGF-1 nigral DA neuronal neuroprotection against a unilateral rat model of Parkinson's disease. Dev Neurobiol 68:632–644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rai SN et al (2017) Mucuna pruriens protects against MPTP intoxicated neuroinflammation in Parkinson’s disease through NF-κB/pAKT signaling pathways. Front Aging Neurosci 9:421. https://doi.org/10.3389/fnagi.2017.00421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramalingam M, Kim S-J (2017) Protective effects of activated signaling pathways by insulin on C6 glial cell model of MPP+-induced Parkinson’s disease. J Recept Signal Transduct 37:100–107

    Article  CAS  Google Scholar 

  • Rane SG (1999) Ion channels as physiological effectors for growth factor receptor and Ras/ERK signaling pathways. Adv Second Messenger Phosphoprotein Res:107–130

  • Read DE, Gorman AM (2009) Involvement of Akt in neurite outgrowth. Cell Mol Life Sci 66:2975–2984

    Article  PubMed  CAS  Google Scholar 

  • Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361:1545–1564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reszka AA, Seger R, Diltz CD, Krebs EG, Fischer EH (1995) Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proc Natl Acad Sci 92:8881–8885

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Romashkova JA, Makarov SS (1999) NF-κB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401:86–90

    Article  PubMed  CAS  Google Scholar 

  • van Roon-Mom WM, Pepers BA, AC't Hoen P, Verwijmeren CA, den Dunnen JT, Dorsman JC, van Ommen GB (2008) Mutant huntingtin activates Nrf2-responsive genes and impairs dopamine synthesis in a PC12 model of Huntington’s disease. BMC Mol Biol 9:84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ross CA, Akimov SS (2014) Human-induced pluripotent stem cells: potential for neurodegenerative diseases. Hum Mol Genet 23:R17–R26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Russo C, Dolcini V, Salis S, Venezia V, Zambrano N, Russo T, Schettini G (2002) Signal transduction through tyrosine-phosphorylated C-terminal fragments of amyloid precursor protein via an enhanced interaction with Shc/Grb2 adaptor proteins in reactive astrocytes of Alzheimer’s disease brain. J Biol Chem 277:35282–35288

    Article  PubMed  CAS  Google Scholar 

  • Saba J, Turati J, Ramírez D, Carniglia L, Durand D, Lasaga M, Caruso C (2018) Astrocyte truncated‐TrkB mediates BDNF antiapoptotic effect leading to neuroprotection. J Neurochem. https://doi.org/10.1111/jnc.14476

  • Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225

    Article  PubMed  CAS  Google Scholar 

  • Shaughnessy DT, McAllister K, Worth L, Haugen AC, Meyer JN, Domann FE, van Houten B, Mostoslavsky R, Bultman SJ, Baccarelli AA, Begley TJ, Sobol RW, Hirschey MD, Ideker T, Santos JH, Copeland WC, Tice RR, Balshaw DM, Tyson FL (2014) Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ Health Perspect 122:1271–1278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheikh S, Haque E, Mir SS (2013) Neurodegenerative diseases: multifactorial conformational diseases and their therapeutic interventions. J Neurodegener Dis 2013

  • Shin S, Dimitri CA, Yoon S-O, Dowdle W, Blenis J (2010) ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Mol Cell 38:114–127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simonian N, Coyle J (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106

    Article  PubMed  CAS  Google Scholar 

  • Slater A, Stefan C, Nobel I, Orrenius S (1996) Intracellular redox changes during apoptosis. Cell Death Differ 3:57–62

    PubMed  CAS  Google Scholar 

  • Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9:59–71

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stanciu M, DeFranco DB (2002) Prolonged nuclear retention of activated extracellular signal-regulated protein kinase promotes cell death generated by oxidative toxicity or proteasome inhibition in a neuronal cell line. J Biol Chem 277:4010–4017

    Article  PubMed  CAS  Google Scholar 

  • Stanciu M, Wang Y, Kentor R, Burke N, Watkins S, Kress G, Reynolds I, Klann E, Angiolieri MR, Johnson JW, DeFranco DB (2000) Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J Biol Chem 275:12200–12206

    Article  PubMed  CAS  Google Scholar 

  • Stephens L, Anderson K, Stokoe D, Erdjument-Bromage H, Painter GF, Holmes AB, Gaffney PRJ, Reese CB, McCormick F, Tempst P, Coadwell J, Hawkins PT (1998) Protein kinase B kinases that mediate phosphatidylinositol 3, 4, 5-trisphosphate-dependent activation of protein kinase B. Science 279:710–714

    Article  PubMed  CAS  Google Scholar 

  • Sturgill TW, Ray LB, Erikson E, Maller JL (1988) Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 334:715–718

    Article  PubMed  CAS  Google Scholar 

  • Sturla L-M, Cowan CW, Guenther L, Castellino RC, Kim JY, Pomeroy SL (2005) A novel role for extracellular signal-regulated kinase 5 and myocyte enhancer factor 2 in medulloblastoma cell death. Cancer Res 65:5683–5689

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam S, Unsicker K (2006) Extracellular signal-regulated kinase as an inducer of non-apoptotic neuronal death. Neuroscience 138:1055–1065

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam S, Unsicker K (2010) ERK and cell death: ERK1/2 in neuronal death. FEBS J 277:22–29

    Article  PubMed  CAS  Google Scholar 

  • Sugino T, Nozaki K, Takagi Y, Hattori I, Hashimoto N, Moriguchi T, Nishida E (2000) Activation of mitogen-activated protein kinases after transient forebrain ischemia in gerbil hippocampus. J Neurosci 20:4506–4514

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tejeda GS, Ayuso-Dolado S, Arbeteta R, Esteban-Ortega GM, Vidaurre OG, Díaz-Guerra M (2016) Brain ischaemia induces shedding of a BDNF-scavenger ectodomain from TrkB receptors by excitotoxicity activation of metalloproteinases and γ-secretases. J Pathol 238:627–640

    Article  PubMed  CAS  Google Scholar 

  • Tsirigotis M, Baldwin RM, Tang MY, Lorimer IA, Gray DA (2008) Activation of p38MAPK contributes to expanded polyglutamine-induced cytotoxicity. PloS one 3:e2130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaillant A, Mazzoni I, Tudan C, Boudreau M, Kaplan D, Miller F (1999) Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase–Akt pathway to synergistically regulate neuronal survival. J Cell Biol 146:955–966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanhaesebroeck B, Alessi DR (2000) The PI3K–PDK1 connection: more than just a road to PKB. Biochem J 346(Pt 3):561–576

    PubMed  PubMed Central  CAS  Google Scholar 

  • Vargas MR, Johnson DA, Sirkis DW, Messing A, Johnson JA (2008) Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci 28:13574–13581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vidaurre ÓG et al (2013) Imbalance of neurotrophin receptor isoforms TrkB-FL/TrkB-T1 induces neuronal death in excitotoxicity. Cell Death Dis 3:e256

    Article  CAS  Google Scholar 

  • Von Kriegsheim A et al (2009) Cell fate decisions are specified by the dynamic ERK interactome. Nat Cell Biol 11:1458–1464

    Article  CAS  Google Scholar 

  • Wang RM, Zhang QG, Li CH, Zhang GY (2005) Activation of extracellular signal-regulated kinase 5 may play a neuroprotective role in hippocampal CA3/DG region after cerebral ischemia. J Neurosci Res 80:391–399

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Zhang M, Zhang L, Cai H, Zhou S, Zhang J, Wang Y (2010) Correlation of Nrf2, HO-1, and MRP3 in gallbladder cancer and their relationships to clinicopathologic features and survival. J Surg Res 164:e99–e105

    Article  PubMed  CAS  Google Scholar 

  • Wang H-Q, Xu Y-X, Zhu C-Q (2012) Upregulation of heme oxygenase-1 by acteoside through ERK and PI3 K/Akt pathway confer neuroprotection against beta-amyloid-induced neurotoxicity. Neurotox Res 21:368–378

    Article  PubMed  CAS  Google Scholar 

  • Wang T et al (2018) α-Lipoic acid attenuates oxidative stress and neurotoxicity via the ERK/Akt-dependent pathway in the mutant hSOD1 related Drosophila model and the NSC34 cell line of amyotrophic lateral sclerosis. Brain Res Bull 140:299–310

    Article  PubMed  CAS  Google Scholar 

  • Waskiewicz AJ, Flynn A, Proud CG, Cooper JA (1997) Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J 16:1909–1920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wellbrock C, Karasarides M, Marais R (2004) The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5:875–885

    Article  PubMed  CAS  Google Scholar 

  • Wick A, Wick W, Waltenberger J, Weller M, Dichgans J, Schulz JB (2002) Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J Neurosci 22:6401–6407

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wortzel I, Seger R (2011) The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer 2:195–209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wymann MP, Zvelebil M, Laffargue M (2003) Phosphoinositide 3-kinase signalling–which way to target? Trends Pharmacol Sci 24:366–376

    Article  PubMed  CAS  Google Scholar 

  • Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331

    Article  PubMed  CAS  Google Scholar 

  • Xia XG, Harding T, Weller M, Bieneman A, Uney JB, Schulz JB (2001) Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci 98:10433–10438

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu X, Zhang A, Zhu Y, He W, Di W, Fang Y, and Shi X (2019) MFG‐E8 reverses microglial‐induced neurotoxic astrocyte (A1) via NF‐κB and PI3K‐Akt pathways. J Cell Physiol 234(1):904–914

  • Yao R, Cooper GM (1995) Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267:2003–2006

    Article  PubMed  CAS  Google Scholar 

  • Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44

    Article  PubMed  CAS  Google Scholar 

  • Yung Y, Yao Z, Hanoch T, Seger R (2017) ERK1b, a 46-kDa ERK isoform that is differentially regulated by MEK. J Biol Chem 292:8854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng C-F, Guan K-L (1993) Properties of MEKs, the kinases that phosphorylate and activate the extracellular signal-regulated kinases. J Biol Chem 268:23933–23939

    PubMed  CAS  Google Scholar 

  • Zhu J-H, Kulich SM, Oury TD, Chu CT (2002a) Cytoplasmic aggregates of phosphorylated extracellular signal-regulated protein kinases in Lewy body diseases. Am J Pathol 161:2087–2098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu X, Lee H-g, Raina AK, Perry G, Smith MA (2002b) The role of mitogen-activated protein kinase pathways in Alzheimer’s disease. Neurosignals 11:270–281

    Article  PubMed  CAS  Google Scholar 

  • Zhu J-h, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT (2007) Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am J Pathol 170:75–86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zimmermann S, Moelling K (1999) Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286:1741–1744

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya Pratap Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, S.N., Dilnashin, H., Birla, H. et al. The Role of PI3K/Akt and ERK in Neurodegenerative Disorders. Neurotox Res 35, 775–795 (2019). https://doi.org/10.1007/s12640-019-0003-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-019-0003-y

Keywords

Navigation