Skip to main content

Advertisement

Log in

Neuroprotective Effects of Ferrostatin and Necrostatin Against Entorhinal Amyloidopathy-Induced Electrophysiological Alterations Mediated by voltage-gated Ca2+ Channels in the Dentate Gyrus Granular Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that is the main form of dementia. Abnormal deposition of amyloid-beta (Aβ) peptides in neurons and synapses cause neuronal loss and cognitive deficits. We have previously reported that ferroptosis and necroptosis were implicated in Aβ25−35 neurotoxicity, and their specific inhibitors had attenuating effects on cognitive impairment induced by Aβ25−35 neurotoxicity. Here, we aimed to examine the impact of ferroptosis and necroptosis inhibition following the Aβ25−35 neurotoxicity on the neuronal excitability of dentate gyrus (DG) and the possible involvement of voltage-gated Ca2+ channels in their effects. After inducing Aβ25−35 neurotoxicity, electrophysiological alterations in the intrinsic properties and excitability were recorded by the whole-cell patch-clamp under current-clamp condition. Voltage-clamp recordings were also performed to shed light on the involvement of calcium channel currents. Aβ25−35 neurotoxicity induced a considerable reduction in input resistance (Rin), accompanied by a profoundly decreased excitability and a reduction in the amplitude of voltage-gated calcium channel currents in the DG granule cells. However, three days of administration of either ferrostatin-1 (Fer-1), a ferroptosis inhibitor, or Necrostatin-1 (Nec-1), a necroptosis inhibitor, in the entorhinal cortex could almost preserve the normal excitability and the Ca2+ currents. In conclusion, these findings suggest that ferroptosis and necroptosis involvement in EC amyloidopathy could be a potential candidate to prevent the suppressive effect of Aβ on the Ca2+ channel current and neuronal function, which might take place in neurons during the development of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data are available from the corresponding author on reasonable request.

References

  1. Lynch C (2020) World Alzheimer report 2019: attitudes to dementia, a global survey: public health: engaging people in ADRD research. Alzheimer’s Dement 16:e038255

    Article  Google Scholar 

  2. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  3. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  PubMed  CAS  Google Scholar 

  4. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Scala F, Fusco S, Ripoli C, Piacentini R, Puma DDL, Spinelli M, Laezza F, Grassi C, D’Ascenzo M (2015) Intraneuronal Aβ accumulation induces hippocampal neuron hyperexcitability through A-type K + current inhibition mediated by activation of caspases and GSK-3. Neurobiol Aging 36:886–900

    Article  PubMed  CAS  Google Scholar 

  6. Marcello E, Epis R, Saraceno C, Di Luca M (2012) Synaptic dysfunction in Alzheimer’s disease. Adv Exp Med Biol. https://doi.org/10.1007/978-3-7091-0932-8_25

    Article  PubMed  Google Scholar 

  7. Knowles RB, Gomez-Isla T, Hyman BT (1998) Aβ associated neuropil changes: correlation with neuronal loss and dementia. J Neuropathol Exp Neurol 57:1122–1130

    Article  PubMed  CAS  Google Scholar 

  8. Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E, Rentz DM, Bertram L, Mullin K, Tanzi RE, Blacker D, Albert MS, Sperling RA (2005) Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 65:404–411

    Article  PubMed  CAS  Google Scholar 

  9. Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, Yoo J, Ho KO, Yu GQ, Kreitzer A, Finkbeiner S, Noebels JL, Mucke L (2007) Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55:697–711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Masdeu JC, Zubieta JL, Arbizu J (2005) Neuroimaging as a marker of the onset and progression of Alzheimer’s disease. J Neurol Sci 236:55–64

    Article  PubMed  Google Scholar 

  11. Wu W, Small SA (2006) Imaging the earliest stages of Alzheimer’s disease. Curr Alzheimer Res 3:529–539

    Article  PubMed  CAS  Google Scholar 

  12. Stranahan AM, Mattson MP (2010) Selective vulnerability of neurons in layer II of the entorhinal cortex during aging and Alzheimer’s disease. Neural Plast 2010:108190

    Article  PubMed  PubMed Central  Google Scholar 

  13. Igarashi KM (2022) Entorhinal cortex dysfunction in Alzheimer’s disease. Trends Neurosci. https://doi.org/10.1016/j.tins.2022.11.006

    Article  PubMed  PubMed Central  Google Scholar 

  14. Di Castro MA, Volterra A (2022) Astrocyte control of the entorhinal cortex-dentate gyrus circuit: relevance to cognitive processing and impairment in pathology. Glia 70:1536–1553

    Article  PubMed  Google Scholar 

  15. Aliakbari S, Sayyah M, Mirzapourdelavar H, Amini N, Naghdi N, Pourbadie HG (2021) Overexpression of protein kinase Mζ in the hippocampal dentate gyrus rescues amyloid-β-induced synaptic dysfunction within entorhinal-hippocampal circuit. Neurobiol Aging 101:160–171

    Article  PubMed  CAS  Google Scholar 

  16. Yun SH, Gamkrelidze G, Stine WB, Sullivan PM, Pasternak JF, LaDu MJ, Trommer BL (2006) Amyloid-beta1–42 reduces neuronal excitability in mouse dentate gyrus. Neurosci Lett 403:162–165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Cuevas ME, Haensgen H, Sepúlveda FJ, Zegers G, Roa J, Opazo C, Aguayo LG (2011) Soluble Aβ(1–40) peptide increases excitatory neurotransmission and induces epileptiform activity in hippocampal neurons. J Alzheimer’s disease: JAD 23:673–687

    Article  PubMed  CAS  Google Scholar 

  18. Gholami Pourbadie H, Naderi N, Janahmadi M, Mehranfard N, Motamedi F (2016) Calcium channel blockade attenuates abnormal synaptic transmission in the dentate gyrus elicited by entorhinal amyloidopathy. Synapse 70:408–417

    Article  PubMed  CAS  Google Scholar 

  19. Harris JA, Devidze N, Verret L, Ho K, Halabisky B, Thwin MT, Kim D, Hamto P, Lo I, Yu GQ, Palop JJ, Masliah E, Mucke L (2010) Transsynaptic progression of amyloid-β-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron 68:428–441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Eslamizade M, Saffarzadeh F, Mousavi S, Meftahi G, Hosseinmardi N, Mehdizadeh M, Janahmadi M (2015) Alterations in CA1 pyramidal neuronal intrinsic excitability mediated by Ih channel currents in a rat model of amyloid beta pathology. Neuroscience 305:279–292

    Article  PubMed  CAS  Google Scholar 

  21. Eslamizade MJ, Madjd Z, Rasoolijazi H, Saffarzadeh F, Pirhajati V, Aligholi H, Janahmadi M, Mehdizadeh M (2016) Impaired memory and evidence of histopathology in CA1 pyramidal neurons through injection of Aβ1–42 peptides into the frontal cortices of rat. Basic clin Neurosci 7:31

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Pourbadie HG, Naderi N, Mehranfard N, Janahmadi M, Khodagholi F, Motamedi F (2015) Preventing effect of L-type calcium channel blockade on electrophysiological alterations in dentate gyrus granule cells induced by entorhinal amyloid pathology. PLoS ONE 10:e0117555

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zilberter M, Ivanov A, Ziyatdinova S, Mukhtarov M, Malkov A, Alpár A, Tortoriello G, Botting CH, Fülöp L, Osypov AA (2013) Dietary energy substrates reverse early neuronal hyperactivity in a mouse model of Alzheimer’s disease. J Neurochem 125:157–171

    Article  PubMed  CAS  Google Scholar 

  24. Palop JJ, Mucke L (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13:812–818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Haghani M, Shabani M, Javan M, Motamedi F, Janahmadi M (2012) CB1 cannabinoid receptor activation rescues amyloid β-induced alterations in behaviour and intrinsic electrophysiological properties of rat hippocampal CA1 pyramidal neurones. Cell Physiol Biochem: Int J exp Cell Physiol Biochem Pharmacol 29:391–406

    Article  CAS  Google Scholar 

  26. Currais A, Hortobágyi T, Soriano S (2009) The neuronal cell cycle as a mechanism of pathogenesis in Alzheimer’s disease. Aging 1:363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Gómez-Isla T, Price JL, McKeel DW Jr, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci: Off J Soc Neurosci 16:4491–4500

    Article  Google Scholar 

  28. Li X, Li D, Li Q, Li Y, Li K, Li S, Han Y (2016) Hippocampal subfield volumetry in patients with subcortical vascular mild cognitive impairment. Sci Rep 6:20873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Goel P, Chakrabarti S, Goel K, Bhutani K, Chopra T, Bali S (2022) Neuronal cell death mechanisms in Alzheimer’s disease: an insight. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2022.937133

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang G, Zhang Y, Shen Y, Wang Y, Zhao M, Sun L (2021) The potential role of ferroptosis in Alzheimer’s disease. J Alzheimers Dis 80:907–925

    Article  PubMed  Google Scholar 

  31. Richard R, Mousa S (2022) Necroptosis in Alzheimer’s disease: potential therapeutic target. Biomed Pharmacother 152:113203

    Article  PubMed  CAS  Google Scholar 

  32. Obulesu M, Lakshmi MJ (2014) Apoptosis in Alzheimer’s disease: an understanding of the physiology, pathology and therapeutic avenues. Neurochem Res 39:2301–2312

    Article  PubMed  CAS  Google Scholar 

  33. Zhang Z, Yang X, Song Y-Q, Tu J (2021) Autophagy in Alzheimer’s disease pathogenesis: therapeutic potential and future perspectives. Ageing Res Rev 72:101464

    Article  PubMed  CAS  Google Scholar 

  34. Castellazzi M, Patergnani S, Donadio M, Giorgi C, Bonora M, Bosi C, Brombo G, Pugliatti M, Seripa D, Zuliani G (2019) Autophagy and mitophagy biomarkers are reduced in sera of patients with Alzheimer’s disease and mild cognitive impairment. Sci Rep 9:20009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wang J, Liu B, Xu Y, Yang M, Wang C, Song M, Liu J, Wang W, You J, Sun F (2021) Activation of CREB-mediated autophagy by thioperamide ameliorates β‐amyloid pathology and cognition in Alzheimer’s disease. Aging Cell 20:e13333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Majumder S, Richardson A, Strong R, Oddo S (2011) Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS ONE 6:e25416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Doody RS, Gavrilova SI, Sano M, Thomas RG, Aisen PS, Bachurin SO, Seely L, Hung D (2008) Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study. Lancet 372:207–215

    Article  PubMed  CAS  Google Scholar 

  38. Caccamo A, Oddo S, Tran LX, LaFerla FM (2007) Lithium reduces tau phosphorylation but not Aβ or working memory deficits in a transgenic model with both plaques and tangles. Am J Pathol 170:1669–1675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Di Meco A, Curtis ME, Lauretti E, Praticò D (2020) Autophagy dysfunction in Alzheimer’s disease: mechanistic insights and new therapeutic opportunities. Biol Psychiatry 87:797–807

    Article  PubMed  Google Scholar 

  40. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Chen X, Comish PB, Tang D, Kang R (2021) Characteristics and biomarkers of ferroptosis. Front Cell Dev Biol 9:637162

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li J, Cao F, Yin H-l, Huang Z-j, Lin Z-t, Mao N, Sun B, Wang G (2020) Ferroptosis: past, present and future. Cell Death Dis 11:88

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yamamoto A, Shin RW, Hasegawa K, Naiki H, Sato H, Yoshimasu F, Kitamoto T (2002) Iron (III) induces aggregation of hyperphosphorylated τ and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer’s disease. J Neurochem 82:1137–1147

    Article  PubMed  CAS  Google Scholar 

  44. Ayton S, Wang Y, Diouf I, Schneider JA, Brockman J, Morris MC, Bush AI (2020) Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology. Mol Psychiatry 25:2932–2941

    Article  PubMed  CAS  Google Scholar 

  45. Wu JR, Tuo QZ, Lei P (2018) Ferroptosis, a recent defined form of critical cell death in neurological disorders. J Mol Neurosci 66:197–206

    Article  PubMed  CAS  Google Scholar 

  46. Hambright WS, Fonseca RS, Chen L, Na R, Ran Q (2017) Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol 12:8–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Cao JY, Dixon SJ (2016) Mechanisms of ferroptosis. Cell Mol Life Sci 73:2195–2209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Naderi S, Khodagholi F, Pourbadie HG, Naderi N, Rafiei S, Janahmadi M, Sayehmiri F, Motamedi F (2022) Role of amyloid beta (25–35) neurotoxicity in the ferroptosis and necroptosis as modalities of regulated cell death in Alzheimer’s Disease. Neurotoxicology. https://doi.org/10.1016/j.neuro.2022.11.003

    Article  PubMed  Google Scholar 

  49. Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K, Rosenberg PA, Lo DC, Weinberg JM, Linkermann A, Stockwell BR (2014) Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 136:4551–4556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Vitalakumar D, Sharma A, Flora SJ (2021) Ferroptosis: a potential therapeutic target for neurodegenerative diseases. J Biochem Mol Toxicol 35:e22830

    Article  PubMed  CAS  Google Scholar 

  51. Caccamo A, Branca C, Piras IS, Ferreira E, Huentelman MJ, Liang WS, Readhead B, Dudley JT, Spangenberg EE, Green KN (2017) Necroptosis activation in Alzheimer’s disease. Nat Neurosci 20:1236–1246

    Article  PubMed  CAS  Google Scholar 

  52. Galluzzi L, Kepp O, Kroemer G (2014) MLKL regulates necrotic plasma membrane permeabilization. Cell Res 24:139–140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Seo J, Nam YW, Kim S, Oh D-B, Song J (2021) Necroptosis molecular mechanisms: recent findings regarding novel necroptosis regulators. Exp Mol Med 53:1007–1017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Li Y, Yang X, Ma C, Qiao J, Zhang C (2008) Necroptosis contributes to the NMDA-induced excitotoxicity in rat’s cultured cortical neurons. Neurosci Lett 447:120–123

    Article  PubMed  CAS  Google Scholar 

  55. Hernández DE, Salvadores NA, Moya-Alvarado G, Catalán RJ, Bronfman FC, Court FA (2018) Axonal degeneration induced by glutamate excitotoxicity is mediated by necroptosis. J Cell Sci 131:jcs214684

    Article  PubMed  Google Scholar 

  56. Maurice T, Mustafa M-H, Desrumaux C, Keller E, Naert G, Garcia-Barcelo MDLC, Rodriguez Cruz Y, Garcia Rodriguez JC (2013) Intranasal formulation of erythropoietin (EPO) showed potent protective activity against amyloid toxicity in the Aβ25–35 non-transgenic mouse model of Alzheimer’s disease. J Psychopharmacol 27:1044–1057

    Article  PubMed  CAS  Google Scholar 

  57. Ghasemi R, Zarifkar A, Rastegar K, Moosavi M (2014) Insulin protects against Aβ-induced spatial memory impairment, hippocampal apoptosis and MAPKs signaling disruption. Neuropharmacology 85:113–120

    Article  PubMed  CAS  Google Scholar 

  58. Do Van B, Gouel F, Jonneaux A, Timmerman K, Gelé P, Pétrault M, Bastide M, Laloux C, Moreau C, Bordet R (2016) Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiol Dis 94:169–178

    Article  PubMed  CAS  Google Scholar 

  59. Xie BS, Wang YQ, Lin Y, Mao Q, Feng JF, Gao GY, Jiang JY (2019) Inhibition of ferroptosis attenuates tissue damage and improves long-term outcomes after traumatic brain injury in mice. CNS Neurosci Ther 25:465–475

    Article  PubMed  CAS  Google Scholar 

  60. Nikseresht S, Khodagholi F, Nategh M, Dargahi L (2015) RIP1 inhibition rescues from LPS-induced RIP3-mediated programmed cell death, distributed energy metabolism and spatial memory impairment. J Mol Neurosci 57:219–230

    Article  PubMed  CAS  Google Scholar 

  61. Kobro-Flatmoen A, Lagartos-Donate MJ, Aman Y, Edison P, Witter MP, Fang EF (2021) Re-emphasizing early Alzheimer’s disease pathology starting in select entorhinal neurons, with a special focus on mitophagy. Ageing Res Rev 67:101307

    Article  PubMed  CAS  Google Scholar 

  62. Olajide OJ, Suvanto ME, Chapman CA (2021) Molecular mechanisms of neurodegeneration in the entorhinal cortex that underlie its selective vulnerability during the pathogenesis of Alzheimer’s disease. Biology Open 10:bio056796

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bott J-B, Cosquer B, Héraud C, Zerbinatti C, Kelche C, Cassel J-C, Mathis C (2013) Reduced plasticity and mild cognitive impairment-like deficits after entorhinal lesions in hAPP/APOE4 mice. Neurobiol Aging 34:2683–2693

    Article  PubMed  CAS  Google Scholar 

  64. De Calignon A, Polydoro M, Suárez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA (2012) Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73:685–697

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hawley WR, Grissom EM, Barratt HE, Conrad TS, Dohanich GP (2012) The effects of biological sex and gonadal hormones on learning strategy in adult rats. Physiol Behav 105:1014–1020

    Article  PubMed  CAS  Google Scholar 

  66. Hamson DK, Roes MM, Galea LA (2016) Sex hormones and cognition. neuroendocrine influences on memory and learning. Compr Physiol. https://doi.org/10.1002/cphy.c150031

    Article  PubMed  Google Scholar 

  67. Safari S, Ahmadi N, Mohammadkhani R, Ghahremani R, Khajvand-Abedeni M, Shahidi S, Komaki A, Salehi I, Karimi SA (2021) Sex differences in spatial learning and memory and hippocampal long-term potentiation at perforant pathway–dentate gyrus (PP–DG) synapses in Wistar rats. Behav Brain Funct: BBF 17:9

    Article  PubMed  PubMed Central  Google Scholar 

  68. Beck H, Yaari Y (2008) Plasticity of intrinsic neuronal properties in CNS disorders. Nat Rev Neurosci 9:357–369

    Article  PubMed  CAS  Google Scholar 

  69. Zhang W, Linden DJ (2003) The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat Rev Neurosci 4:885–900

    Article  PubMed  CAS  Google Scholar 

  70. Wykes R, Kalmbach A, Eliava M, Waters J (2012) Changes in the physiology of CA1 hippocampal pyramidal neurons in preplaque CRND8 mice. Neurobiol Aging 33:1609–1623

    Article  PubMed  CAS  Google Scholar 

  71. Kerrigan T, Brown J, Randall A (2014) Characterization of altered intrinsic excitability in hippocampal CA1 pyramidal cells of the Aβ-overproducing PDAPP mouse. Neuropharmacology 79:515–524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Brown JT, Chin J, Leiser SC, Pangalos MN, Randall AD (2011) Altered intrinsic neuronal excitability and reduced na + currents in a mouse model of Alzheimer’s disease. Neurobiol Aging 32:2109 e2101-2109 e2114

    Article  Google Scholar 

  73. Alcantara-Gonzalez D, Chartampila E, Criscuolo C, Scharfman HE (2021) Early changes in synaptic and intrinsic properties of dentate gyrus granule cells in a mouse model of Alzheimer’s disease neuropathology and atypical effects of the cholinergic antagonist atropine. Neurobiol Dis 152:105274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Jiang N, Cupolillo D, Grosjean N, Muller E, Deforges S, Mulle C, Amédée T (2021) Impaired plasticity of intrinsic excitability in the dentate gyrus alters spike transfer in a mouse model of Alzheimer’s disease. Neurobiol Dis 154:105345

    Article  PubMed  CAS  Google Scholar 

  75. Brahimi Y, Knauer B, Price AT, Valero-Aracama MJ, Reboreda A, Sauvage M, Yoshida M (2023) Persistent firing in hippocampal CA1 pyramidal cells in young and aged rats (2023). eNeuro. https://doi.org/10.1523/ENEURO.0479-22.2023

    Article  PubMed  PubMed Central  Google Scholar 

  76. Potier B, Lamour Y, Dutar P (1993) Age-related alterations in the properties of hippocampal pyramidal neurons among rat strains. Neurobiol Aging 14:17–25

    Article  PubMed  CAS  Google Scholar 

  77. Matsumura R, Yamamoto H (2018) Dependence and homeostasis of membrane impedance on cell morphology in cultured hippocampal neurons. Sci Rep 8:9905

    Article  PubMed  PubMed Central  Google Scholar 

  78. Oh MM, Oliveira F, Disterhoft JF (2010) Learning and aging related changes in intrinsic neuronal excitability. Front Aging Neurosci 2:2

    PubMed  PubMed Central  Google Scholar 

  79. Lin C, Sherathiya VN, Oh MM, Disterhoft JF (2020) Persistent firing in LEC III neurons is differentially modulated by learning and aging. Elife 9:e56816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Wang Y, Zhang G, Zhou H, Barakat A, Querfurth H (2009) Opposite effects of low and high doses of Abeta42 on electrical network and neuronal excitability in the rat prefrontal cortex. PLoS ONE 4:e8366

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pitler TA, Landfield PW (1990) Aging-related prolongation of calcium spike duration in rat hippocampal slice neurons. Brain Res 508:1–6

    Article  PubMed  CAS  Google Scholar 

  82. Kaczorowski C, Sametsky E, Shah S, Vassar R, Disterhoft J (2011) Mechanisms underlying basal and learning-related intrinsic excitability in a mouse model of Alzheimer’s disease. Neurobiol Aging 32:1452–1465

    Article  PubMed  CAS  Google Scholar 

  83. Rocher AB, Kinson MS, Luebke JI (2008) Significant structural but not physiological changes in cortical neurons of 12-month-old Tg2576 mice. Neurobiol Dis 32:309–318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Spencer JP, Weil A, Hill K, Hussain I, Richardson JC, Cusdin FS, Chen YH, Randall AD (2006) Transgenic mice over-expressing human beta-amyloid have functional nicotinic alpha 7 receptors. Neuroscience 137:795–805

    Article  PubMed  CAS  Google Scholar 

  85. Poolos NP, Migliore M, Johnston D (2002) Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat Neurosci 5:767–774

    Article  PubMed  CAS  Google Scholar 

  86. Maccaferri G, McBain CJ (1996) The hyperpolarization-activated current (ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens‐alveus interneurones. J Physiol 497:119–130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Karimi SA, Hosseinmardi N, Sayyah M, Hajisoltani R, Janahmadi M (2021) Enhancement of intrinsic neuronal excitability-mediated by a reduction in hyperpolarization‐activated cation current (ih) in hippocampal CA1 neurons in a rat model of traumatic brain injury. Hippocampus 31:156–169

    Article  PubMed  CAS  Google Scholar 

  88. Ha GE, Cheong E (2017) Spike frequency adaptation in neurons of the central nervous system. Exp Neurobiol 26:179

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gu N, Vervaeke K, Storm JF (2007) BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. J Physiol 580:859–882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Bahrami F, Asgari A, Hosseinmardi N, Janahmadi M (2019) Peroxisome proliferator-activated receptor (PPAR)-γ modifies Aβ neurotoxin-induced electrophysiological alterations in rat primary cultured hippocampal neurons. Iran J Pharm Research: IJPR 18:1403

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Rovira C, Arbez N, Mariani J (2002) Abeta(25–35) and abeta(1–40) act on different calcium channels in CA1 hippocampal neurons. Biochem Biophys Res Commun 296:1317–1321

    Article  PubMed  CAS  Google Scholar 

  92. Kim S, Rhim H (2011) Effects of amyloid-β peptides on voltage-gated L-type ca(V)1.2 and ca(V)1.3 ca(2+) channels. Mol Cells 32:289–294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Ji Y, Hu Y, Ren J, Khanna R, Yao Y, Chen Y, Li Q, Sun L (2019) CRMP2-derived peptide ST2-104 (R9-CBD3) protects SH-SY5Y neuroblastoma cells against Aβ25-35-induced neurotoxicity by inhibiting the pCRMP2/NMDAR2B signaling pathway. Chemico-Biol Interact 305:28–39

    Article  CAS  Google Scholar 

  94. Giese KP, Storm JF, Reuter D, Fedorov NB, Shao LR, Leicher T, Pongs O, Silva AJ (1998) Reduced K + channel inactivation, spike broadening, and after-hyperpolarization in Kvbeta1.1-deficient mice with impaired learning. Learn Memory (Cold Spring Harbor NY) 5:257–273

    Article  CAS  Google Scholar 

  95. Lin M, Hatcher JT, Wurster RD, Chen QH, Cheng ZJ (2014) Characteristics of single large-conductance Ca2+-activated K + channels and their regulation of action potentials and excitability in parasympathetic cardiac motoneurons in the nucleus ambiguus. Am J Physiol Cell Physiol 306:C152-166

    Article  PubMed  CAS  Google Scholar 

  96. Paz JT, Mahon S, Tiret P, Genet S, Delord B, Charpier S (2009) Multiple forms of activity-dependent intrinsic plasticity in layer V cortical neurones in vivo. J Physiol 587:3189–3205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Van Hook MJ, Berson DM (2010) Hyperpolarization-activated current (I h) in ganglion-cell photoreceptors. PLoS ONE 5:e15344

    Article  PubMed  PubMed Central  Google Scholar 

  98. Storm JF (1988) Temporal integration by a slowly inactivating K + current in hippocampal neurons. Nature 336:379–381

    Article  PubMed  CAS  Google Scholar 

  99. Cudmore RH, Fronzaroli-Molinieres L, Giraud P, Debanne D (2010) Spike-time precision and network synchrony are controlled by the homeostatic regulation of the D-type potassium current. J Neurosci: Off J Soc Neurosci 30:12885–12895

    Article  CAS  Google Scholar 

  100. Ghotbedin Z, Janahmadi M, Mirnajafi-Zadeh J, Behzadi G, Semnanian S (2013) Electrical low frequency stimulation of the kindling site preserves the electrophysiological properties of the rat hippocampal CA1 pyramidal neurons from the destructive effects of amygdala kindling: the basis for a possible promising epilepsy therapy. Brain Stimul 6:515–523

    Article  PubMed  Google Scholar 

  101. Liu M, Li H, Yang R, Ji D, Xia X (2022) GSK872 and necrostatin-1 protect retinal ganglion cells against necroptosis through inhibition of RIP1/RIP3/MLKL pathway in glutamate-induced retinal excitotoxic model of glaucoma. J Neuroinflamm 19:262

    Article  CAS  Google Scholar 

  102. Xie Z, Xu M, Xie J, Liu T, Xu X, Gao W, Li Z, Bai X, Liu X (2022) Inhibition of ferroptosis attenuates Glutamate Excitotoxicity and Nuclear Autophagy in a CLP Septic Mouse Model. Shock: Injury Inflammation and Sepsis: Laboratory and Clinical Approaches 57:694–702

    CAS  Google Scholar 

  103. Cascella R, Cecchi C (2021) Calcium dyshomeostasis in Alzheimer’s disease pathogenesis. Int J Mol Sci 22:4914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Wang H-W, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B, Viola KL, Klein WL, Stine WB, Krafft GA (2002) Soluble oligomers of β amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924:133–140

    Article  PubMed  CAS  Google Scholar 

  105. Puzzo D, Privitera L, Leznik E, Fa M, Staniszewski A, Palmeri A, Arancio O (2008) Picomolar amyloid-β positively modulates synaptic plasticity and memory in hippocampus. J Neurosci 28:14537–14545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Green KN, Peers C (2001) Amyloid beta peptides mediate hypoxic augmentation of ca(2+) channels. J Neurochem 77:953–956

    Article  PubMed  CAS  Google Scholar 

  107. Green KN (2009) Calcium in the initiation, progression and as an effector of Alzheimer’s disease pathology. J Cell Mol Med 13:2787–2799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Pourbadie HG, Naderi N, Delavar HM, Hosseinzadeh M, Mehranfard N, Khodagholi F, Janahmadi M, Motamedi F (2017) Decrease of high voltage Ca2 + currents in the dentate gyrus granule cells by entorhinal amyloidopathy is reversed by calcium channel blockade. Eur J Pharmacol 794:154–161

    Article  PubMed  CAS  Google Scholar 

  109. Cano-Abad MF, Villarroya M, García AG, Gabilan NH, López MG (2001) Calcium entry through L-type calcium channels causes mitochondrial disruption and chromaffin cell death. J Biol Chem 276:39695–39704

    Article  PubMed  CAS  Google Scholar 

  110. Luo CX, Zhu XJ, Zhang AX, Wang W, Yang XM, Liu SH, Han X, Sun J, Zhang SG, Lu Y, Zhu DY (2005) Blockade of L-type voltage-gated ca channel inhibits ischemia-induced neurogenesis by down-regulating iNOS expression in adult mouse. J Neurochem 94:1077–1086

    Article  PubMed  CAS  Google Scholar 

  111. Nimmrich V, Grimm C, Draguhn A, Barghorn S, Lehmann A, Schoemaker H, Hillen H, Gross G, Ebert U, Bruehl C (2008) Amyloid β oligomers (Aβ1–42 globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents. J Neurosci 28:788–797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Chen K, Jiang X, Wu M, Cao X, Bao W, Zhu L-Q (2021) Ferroptosis, a potential therapeutic target in Alzheimer’s disease. Front Cell Dev Biology. https://doi.org/10.3389/fcell.2021.704298

    Article  Google Scholar 

  113. Plascencia-Villa G, Perry G (2021) Preventive and therapeutic strategies in Alzheimer’s disease: focus on oxidative stress, redox metals, and ferroptosis. Antioxid Redox Signal 34:591–610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Lee DG, Park J, Lee H-S, Lee S-R, Lee D-S (2016) Iron overload-induced calcium signals modulate mitochondrial fragmentation in HT-22 hippocampal neuron cells. Toxicology 365:17–24

    Article  PubMed  CAS  Google Scholar 

  115. Angelova PR, Choi ML, Berezhnov AV, Horrocks MH, Hughes CD, De S, Rodrigues M, Yapom R, Little D, Dolt KS (2020) Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation. Cell Death Differ 27:2781–2796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Bao Z, Liu Y, Chen B, Miao Z, Tu Y, Li C, Chao H, Ye Y, Xu X, Sun G (2021) Prokineticin-2 prevents neuronal cell deaths in a model of traumatic brain injury. Nat Commun 12:1–19

    Article  Google Scholar 

  117. Lu C, Chan SL, Fu W, Mattson MP (2002) The lipid peroxidation product 4-hydroxynonenal facilitates opening of voltage-dependent Ca2 + channels in neurons by increasing protein tyrosine phosphorylation. J Biol Chem 277:24368–24375

    Article  PubMed  CAS  Google Scholar 

  118. Zhang Y, Han J (2016) Electrophysiologist shows a cation channel function of MLKL. Cell Res 26:643–644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Ousingsawat J, Cabrita I, Wanitchakool P, Sirianant L, Krautwald S, Linkermann A, Schreiber R, Kunzelmann K (2017) Ca 2+ signals, cell membrane disintegration, and activation of TMEM16F during necroptosis. Cell Mol Life Sci 74:173–181

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Neuroscience Research Center at the Shahid Beheshti University of Medical Science for funding this work as part of the Ph.D. dissertation of Soudabeh Naderi (Grant number:15761). We would also like to thank Dr. Zehra Batool (University of Karachi, Department of Biochemistry, Karachi, Pakistan) for valuable suggestions.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SN: Investigation, Methodology, Acquisition, Formal Analysis, Writing the original draft. MJ, FM: Conceptualization, Supervision, Methodology, Interpretation of data, Funding acquisition. HGP: Conceptualization, Methodology, Interpretation of data. FK: Conceptualization. SR, NN: Methodology. All authors revised and approved the final version of the manuscript.

Corresponding author

Correspondence to Mahyar Janahmadi.

Ethics declarations

Competing Interests

All authors have been substantially involved in the preparation of the present manuscript and no undisclosed groups or persons have had a primary role in the study. All authors have seen and approved the submitted version of the paper and accept responsibility for its content. The authors declare no conflict of interest and declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, S., Motamedi, F., Pourbadie, H.G. et al. Neuroprotective Effects of Ferrostatin and Necrostatin Against Entorhinal Amyloidopathy-Induced Electrophysiological Alterations Mediated by voltage-gated Ca2+ Channels in the Dentate Gyrus Granular Cells. Neurochem Res 49, 99–116 (2024). https://doi.org/10.1007/s11064-023-04006-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04006-7

Keywords

Navigation