Skip to main content

Advertisement

Log in

Effect of Riluzole, a Glutamate Release Inhibitor, on Synaptic Plasticity in the Intrahippocampal Aβ Rat Model of Alzheimer’s Disease

  • Published:
Neurophysiology Aims and scope

Alzheimer’s disease (AD) is associated with cognitive deficits of varying degrees and with impairment of the synaptic transmission-related tasks. Pathologically, AD is highlighted with accumulation of extracellular β-amyloid plaques and of neurofibrillary tangles. Glutamate-mediated neurotoxicity plays a pivotal role in the pathogenesis of AD. Deficits of long-term potentiation (LTP) and neuronal synaptic plasticity as an essential mechanism of the learning and memory disorders in AD has been ascribed to over-activation of glutamate receptors. We examined the effect of riluzole, a glutamate release inhibitor, on LTP impairment in the dentate gyrus (DG) in a rat model of AD provided by bilateral intrahippocampal amyloid β (Aβ 25-35) injections; riluzole was administered at a dose of 10 mg/kg. The LTP in perforant path-DG synapses was evaluated using measurements of the field excitatory postsynaptic potential (fEPSP) slope and population spike (PS) amplitude. We found that Aβ (25,26,27,28,29,30,31,32,33,34) significantly decreased the fEPSP slope and PS amplitude, as compared to those in the sham group; riluzole pretreatment in the Aβ-microinjected group significantly increased these parameters. Taken together, it is concluded that riluzole could noticeably improve synaptic plasticity and enhan ce LTP in the rat model of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Amemori, P. Jendelova, J. Ruzicka, et al., “Alzheimer’s disease: Mechanism and approach to cell therapy,” Int. J. Mol. Sci., 16, No. 11, 26417–26451 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. E. J. Mufson, M. D. Ikonomovic, S. E. Counts, et al., “Molecular and cellular pathophysiology of preclinical Alzheimer’s disease,” Behav. Brain Res., 311, No. 1, 54–69 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. H.-C. Huang and Z.-F. Jiang, “Accumulated amyloid-β peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease,” J. Alzheimers. Dis., 16, No. 1, 15–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. A. Serrano-Pozo, M. P. Frosch, E. Masliah, et al., “Neuropathological alterations in Alzheimer disease,” Cold Spring Harb. Perspect. Med., 1, No. 1, a006189, (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. M. R. Hynd, H. L. Scott, and P. R. Dodd, “Glutamatemediated excitotoxicity and neurodegeneration in Alzheimer’s disease,” Neurochem. Int., 45, No. 5, 583–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. J.-y. Koh, L. L. Yang, and C. W. Cotman, “β-Amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage,” Brain Res., 533, No. 2, 315–320 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Q. S. Chen, B. L. Kagan, Y. Hirakura, et al., “Impairment of hippocampal long-term potentiation by Alzheimer amyloid β-peptides.” J. Neurosci. Res., 60, No. 1, 65–72 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. S. Barghorn, V. Nimmrich, A. Striebinger, et al., “Globular amyloid β-peptide 1− 42 oligomer− a homogenous and stable neuropathological protein in Alzheimer’s disease,” J. Neurochem., 95, No. 3, 834–847 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. T. Ondrejcak, I. Klyubin, N.-W. Hu, et al., “Alzheimer’s disease amyloid β-protein and synaptic function,” Neuromol. Med., 12, No. 1, 13–26 (2010).

    Article  CAS  Google Scholar 

  10. L. Gasparini and A. Dityatev, “β-Amyloid and glutamate receptors,” Exp. Neurol., 212, No. 1, 1–4 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. S. Li, S. Hong, N. E. Shepardson, et al., “Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake,” Neuron, 62, No. 6, 788–801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. L. Texidó, M. Martín-Satué, E. Alberdi, et al., “Amyloid β peptide oligomers directly activate NMDA receptors,” Cell Calcium, 49, No. 3, 184–190 (2011).

    Article  PubMed  CAS  Google Scholar 

  13. T. Coderre, N. Kumar, C. Lefebvre, et al., “A comparison of the glutamate release inhibition and anti-allodynic effects of gabapentin, lamotrigine, and riluzole in a model of neuropathic pain,” J. Neurochem., 100, No. 5, 1289–1299 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. C. A. Del Negro, C. Morgado-Valle, J. A. Hayes, et al., “Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation,” J. Neurosci., 25, No. 2, 446–453 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. S.-J. Wang, K.-Y. Wang, and W.-C. Wang, “Mechanisms underlying the riluzole inhibition of glutamate release from rat cerebral cortex nerve terminals (synaptosomes),” Neuroscience, 125, No. 1, 191–201 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. G. M. Chowdhury, M. Banasr, R. A. de Graaf, et al., “Chronic riluzole treatment increases glucose metabolism in rat prefrontal cortex and hippocampus,” J. Cerebr. Blood Flow Metab., 28, No. 12, 1892–1897 (2008).

    Article  CAS  Google Scholar 

  17. M. B. Kennedy, “Signal-processing machines at the postsynaptic density,” Science, 290, No. 5492, 750–754 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. G. B. Landwehrmeyer, B. Dubois, J. G. de Yébenes, et al., “Riluzole in Huntington’s disease: a 3-year, randomized controlled study,” Ann. Neurol., 62, No. 3, 262–272 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. C. Pittenger, V. Coric, M. Banasr, et al., “Riluzole in the treatment of mood and anxiety disorders,” CNS Drugs, 22, No. 9, 761–786 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. C. A. Zarate Jr. and H. K. Manji, “Riluzole in psychiatry: a systematic review of the literature,” Expert Opin. Drug Metab. Toxicol., 4, No. 9, 1223–1234 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. A. C. Pereira, H. K. Lambert, Y. S. Grossman, et al., “Glutamatergic regulation prevents hippocampaldependent age-related cognitive decline through dendritic spine clustering,” Proc. Natl. Acad. Sci. USA, 111, No. 52, 18733–18738 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. H. M. Brothers, I. Bardou, S. C. Hopp, et al., “Riluzole partially rescues age-associated, but not LPS-induced, loss of glutamate transporters and spatial memory,” J. Neuroimmune Pharmacol., 8, No. 5, 1098–1105 (2013).

    Article  PubMed  Google Scholar 

  23. H. Sohanaki, T. Baluchnejadmojarad, F. Nikbakht, et al., “Pelargonidin improves memory deficit in amyloid beta25-35 rat model of Alzheimer’s disease by inhibition of glial activation, cholinesterase, and oxidative stress,” Biomed. Pharmacother., 83, No. 85–91 (2016).

    Article  CAS  Google Scholar 

  24. H. Sohanaki, T. Baluchnejadmojarad, F. Nikbakht, et al., “Pelargonidin improves passive avoidance task performance in a rat amyloid beta25-35 model of Alzheimer’s disease via estrogen receptor independent pathways,” Acta. Med. Iran., 54, No. 4, 245–250 (2016).

    PubMed  Google Scholar 

  25. C. Watson, The Rat Brain in Stereotaxic Coordinates -the New Coronal Set: Academic press (2004)

  26. P. S. Verhave, M. J. Jongsma, R. M. Van Den Berg, et al., “Neuroprotective effects of riluzole in early phase Parkinson’s disease on clinically relevant parameters in the marmoset MPTP model,” Neuropharmacology, 62, No. 4, 1700–1707 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. M. C. Obinu, M. Reibaud, V. Blanchard, et al., “Neuroprotective effect of riluzole in a primate model of Parkinson’s disease: behavioral and histological evidence,” Mov. Disord., 17, No. 1, 13–19 (2002).

    Article  PubMed  Google Scholar 

  28. G. Paxinos and C. Watson, The Rat Brain Atlas in Stereotaxic Coordinates, San Diego: Academic, No. (1998).

  29. H. Kalalian-Moghaddam, T. Baluchnejadmojarad, M. Roghani, et al., “Hippocampal synaptic plasticity restoration and anti-apoptotic effect underlie berberine improvement of learning and memory in streptozotocindiabetic rats,” Eur. J. Pharmacol., 698, No. 1, 259–266 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. M. Bayat, T. Baluchnejadmojarad, M. Roghani, et al., “Netrin-1 improves spatial memory and synaptic plasticity impairment following global ischemia in the rat,” Brain Res., 1452, No. 185–194 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. H. K. Moghaddam, T. Baluchnejadmojarad, M. Roghani, et al., “Berberine chloride improved synaptic plasticity in STZ induced diabetic rats,” Metab. Brain Dis., 28, No. 3, 421–428 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. T. Baluchnejadmojarad and M. Roghani, “Involvement of high-conductance calcium-dependent potassium channels in short-term presynaptic plasticity in the rat dentate gyrus,” Neurophysiology, 45, No. 1, 1–5 (2013).

    Article  CAS  Google Scholar 

  33. M. J. Rowan, I. Klyubin, W. K. Cullen, et al., “Synaptic plasticity in animal models of early Alzheimer’s disease,” Philos. Trans. R. Soc. Lond. B Biol. Sci., 358, No. 821–828 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. C. Haass and D. J. Selkoe, “Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide,” Nat. Rev. Mol. Cell Biol., 8, No. 2, 101–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. W. Danysz and C. G. Parsons, “Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine–searching for the connections,” Br. J. Pharmacol., 167, No. 2, 324–352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. A. M. Colangelo, L. Alberghina, and M. Papa, “Astrogliosis as a therapeutic target for neurodegenerative diseases,” Neurosci. Lett., 565, No. 59–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. M. Carbone, S. Duty, and M. Rattray, “Riluzole elevates GLT-1 activity and levels in striatal astrocytes,” Neurochem. Int., 60, No. 1, 31–38 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Z. Esposito, L. Belli, S. Toniolo, et al., “Amyloid β, glutamate, excitotoxicity in Alzheimer’s disease: are we on the right track?” CNS Neurosci. Ther., 19, No. 8, 549–555 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. H. C. Hunsberger, D. S. Weitzner, C. C. Rudy, et al., “Riluzole rescues glutamate alterations, cognitive deficits, and tau pathology associated with P301L tau expression,” J. Neurochem., 135, No. 2, 381–94 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Baluchnejadmojarad or M. Roghani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtari, Z., Baluchnejadmojarad, T., Nikbakht, F. et al. Effect of Riluzole, a Glutamate Release Inhibitor, on Synaptic Plasticity in the Intrahippocampal Aβ Rat Model of Alzheimer’s Disease. Neurophysiology 51, 266–271 (2019). https://doi.org/10.1007/s11062-019-09820-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-019-09820-w

Keywords

Navigation