Skip to main content
Log in

Time and Brain Region-Dependent Excitatory Neurochemical Alterations in Bilateral Common Carotid Artery Occlusion Global Ischemia Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Strict metabolic regulation in discrete brain regions leads to neurochemical changes in cerebral ischemia. Accumulation of extracellular glutamate is one of the early neurochemical changes that take place during cerebral ischemia. Understanding the sequential neurochemical processes involved in cerebral ischemia-mediated excitotoxicity before the clinical intervention of revascularization and reperfusion may greatly influence future therapeutic strategies for clinical stroke recovery. This study investigated the influence of time and brain regions on excitatory neurochemical indices in the bilateral common carotid artery occlusion (BCCAO) model of global ischemia. Male Wistar rats were subjected to BCCAO for 15 and 60 min to evaluate the effect of ischemia duration on excitatory neurochemical indices (dopamine level, glutamine synthetase, glutaminase, glutamate dehydrogenase, aspartate aminotransferase, monoamine oxidase, acetylcholinesterase, and Na+ K+ ATPase activities) in the discrete brain regions (cortex, striatum, cerebellum, and hippocampus). BCCAO without reperfusion caused marked time and brain region-dependent alterations in glutamatergic, glutaminergic, dopaminergic, monoaminergic, cholinergic, and electrogenic homeostasis. Prolonged BCCAO decreased cortical, striatal, and cerebellar glutamatergic, glutaminergic, dopaminergic, cholinergic, and electrogenic activities; increased hippocampal glutamatergic, glutaminergic, dopaminergic, and cholinergic activities, increased cortical and striatal monoaminergic activity; decreased cerebellar and hippocampal monoaminergic activity; and decreased hippocampal electrogenic activity. This suggests that excitatory neurotransmitters play a major role in the tissue-specific metabolic plasticity and reprogramming that takes place between the onset of cardiac arrest-mediated global ischemia and clinical intervention of recanalization. These tissue-specific neurochemical indices may serve as diagnostic and therapeutic strategies for mitigating the progression of ischemic damage before revascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Abbreviations

BCCAO:

Bilateral common carotid artery occlusion

GS:

Glutamine synthetase activity

GA:

Glutaminase activity

GDH:

Glutamate dehydrogenase activity

AST:

Aspartate aminotransferase activity

DA:

Dopamine level

MAO:

Monoamine oxidase activity

AChE:

Acetylcholinesterase activity

NKA:

Na+ K+ ATPase activity

TCA:

Tricarboxylic acid

References

  1. Handayani ES, Susilowati R, Setyopranoto I, Partadiredja G (2019) Transient bilateral common carotid artery occlusion (tBCCAO) of rats as a model of global cerebral ischemia. Bangladesh J Med Sci 18:491–500. https://doi.org/10.3329/bjms.v18i3.41616

    Article  Google Scholar 

  2. Khoshnam SE, Sarkaki A, Khorsandi L et al (2017) Vanillic acid attenuates effects of transient bilateral common carotid occlusion and reperfusion in rats. Biomed Pharmacother 96:667–674. https://doi.org/10.1016/j.biopha.2017.10.052

    Article  Google Scholar 

  3. Wahul AB, Joshi PC, Kumar A, Chakravarty S (2018) Transient global cerebral ischemia differentially affects cortex, striatum and hippocampus in bilateral common carotid arterial occlusion (BCCAo) mouse model. J Chem Neuroanat 92:1–15. https://doi.org/10.1016/j.jchemneu.2018.04.006

    Article  Google Scholar 

  4. Ghosh MK (2019) Cerebral ischemic stroke cellular fate and therapeutic opportunities. Front Biosci 24:435–450. https://doi.org/10.2741/4727

    Article  Google Scholar 

  5. Woodruff TM, Thundyil J, Tang S-C et al (2011) Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 6:11. https://doi.org/10.1186/1750-1326-6-11

    Article  Google Scholar 

  6. Ojo OB, Amoo ZA, Saliu IO et al (2019) Neurotherapeutic potential of kolaviron on neurotransmitter dysregulation, excitotoxicity, mitochondrial electron transport chain dysfunction and redox imbalance in 2-VO brain ischemia/reperfusion injury. Biomed Pharmacother 111:859–872. https://doi.org/10.1016/j.biopha.2018.12.144

    Article  Google Scholar 

  7. Jeitner TM, Battaile K, Cooper AJL (2015) Critical evaluation of the changes in glutamine synthetase activity in models of cerebral stroke. Neurochem Res 40:2544–2556. https://doi.org/10.1007/s11064-015-1667-1

    Article  Google Scholar 

  8. Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317. https://doi.org/10.1016/B978-0-12-394309-5.00006-7

    Article  Google Scholar 

  9. Choi DW (2020) Excitotoxicity: still hammering the ischemic brain in 2020. Front Neurosci. https://doi.org/10.3389/fnins.2020.579953

    Article  Google Scholar 

  10. Castegna A, Menga A (2018) Glutamine synthetase: localization dictates outcome. Genes 9:108. https://doi.org/10.3390/genes9020108

    Article  Google Scholar 

  11. Cooper A, Jeitner T (2016) Central role of glutamate metabolism in the maintenance of nitrogen homeostasis in normal and hyperammonemic brain. Biomolecules 6:16. https://doi.org/10.3390/biom6020016

    Article  Google Scholar 

  12. Howells DW, Sena ES, Macleod MR (2014) Bringing rigour to translational medicine. Nat Rev Neurol 10:37–43. https://doi.org/10.1038/nrneurol.2013.232

    Article  Google Scholar 

  13. Reis C, Akyol O, Araujo C et al (2017) Pathophysiology and the monitoring methods for cardiac arrest associated brain injury. Int J Mol Sci 18:129. https://doi.org/10.3390/ijms18010129

    Article  Google Scholar 

  14. Traystman RJ (2003) Animal models of focal and global cerebral ischemia. ILAR J 44:85–95. https://doi.org/10.1093/ilar.44.2.85

    Article  Google Scholar 

  15. Desai SM, Jadhav AP (2020) What is the relevance of time in acute stroke treatment? Bryn Mawr Commun 19:4

    Google Scholar 

  16. Saver JL (2006) Time is brain–quantified. Stroke 37:263–266. https://doi.org/10.1161/01.STR.0000196957.55928.ab

    Article  Google Scholar 

  17. du Sert NP, Hurst V, Ahluwalia A et al (2020) The ARRIVE guidelines 20: updated guidelines for reporting animal research. PLOS Biol 18:e3000410. https://doi.org/10.1371/journal.pbio.3000410

    Article  Google Scholar 

  18. Back T, Hemmen T, Schϋler OG (2004) Lesion evolution in cerebral ischemia. J Neurol 251:388–397. https://doi.org/10.1007/s00415-004-0399-y

    Article  Google Scholar 

  19. Wathen CA, Frizon LA, Maiti TK et al (2018) Deep brain stimulation of the cerebellum for poststroke motor rehabilitation: from laboratory to clinical trial. Neurosurg Focus 45:E13. https://doi.org/10.3171/2018.5.FOCUS18164

    Article  Google Scholar 

  20. Farbiszewski R, Bielawska A, Szymanska M, Skrzydlewska E (1996) Spermine partially normalizes in vivo antioxidant defense potential in certain brain regions in transiently hypoperfused rat brain. Neurochem Res 21:1497–1503. https://doi.org/10.1007/BF02533097

    Article  Google Scholar 

  21. Spijker S (2011) Dissection of rodent brain regions. In: Li KW (ed) Neuroproteomics. Humana Press, Totowa, pp 13–26

    Chapter  Google Scholar 

  22. Sadasivam S, Manickam A (2003) Biochemical methods. New Age International Pvt Ltd Publishers, Chennai

    Google Scholar 

  23. Sunil AG, Kesavanarayanan KS, Kalaivani P et al (2011) Total oligomeric flavonoids of Cyperus rotundus ameliorates neurological deficits, excitotoxicity and behavioral alterations induced by cerebral ischemic-reperfusion injury in rats. Brain Res Bull 84:394–405. https://doi.org/10.1016/j.brainresbull.2011.01.008

    Article  Google Scholar 

  24. Imada A, Igarasi S, Nakahama K, Isono M (1973) Asparaginase and glutaminase activities of micro-organisms. J Gen Microbiol 76:85–99. https://doi.org/10.1099/00221287-76-1-85

    Article  Google Scholar 

  25. Bülbül D, Karakuş E (2013) production and optimization of l-glutaminase enzyme from Hypocrea jecorina pure culture. Prep Biochem Biotechnol 43:385–397. https://doi.org/10.1080/10826068.2012.741641

    Article  Google Scholar 

  26. Maharem TM, Emam MA, Said YA (2020) Purification and characterization of l-glutaminase enzyme from camel liver: enzymatic anticancer property. Int J Biol Macromol 150:1213–1222. https://doi.org/10.1016/j.ijbiomac.2019.10.131

    Article  Google Scholar 

  27. Bell RAV, Dawson NJ, Storey KB (2012) Insights into the in vivo regulation of glutamate dehydrogenase from the foot muscle of an estivating land snail. Enzyme Res 2012:317314. https://doi.org/10.1155/2012/317314

    Article  Google Scholar 

  28. Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63. https://doi.org/10.1093/ajcp/28.1.56

    Article  Google Scholar 

  29. Guo L, Zhang Y, Li Q (2009) Spectrophotometric determination of dopamine hydrochloride in pharmaceutical, banana, urine and serum samples by potassium ferricyanide-Fe(III). Anal Sci 25:1451–1455. https://doi.org/10.2116/analsci.25.1451

    Article  Google Scholar 

  30. Holt A, Sharman DF, Baker GB, Palcic MM (1997) A continuous spectrophotometric assay for monoamine oxidase and related enzymes in tissue homogenates. Anal Biochem 244:384–392. https://doi.org/10.1006/abio.1996.9911

    Article  Google Scholar 

  31. Chaudhary S, Parvez S (2012) An in vitro approach to assess the neurotoxicity of valproic acid-induced oxidative stress in cerebellum and cerebral cortex of young rats. Neuroscience 225:258–268. https://doi.org/10.1016/j.neuroscience.2012.08.060

    Article  Google Scholar 

  32. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  Google Scholar 

  33. Svoboda P, Mosinger B (1981) Catecholamines and the brain microsomal Na, k-adenosinetriphosphatase—I. Protection against lipoperoxidative damage. Biochem Pharmacol 30:427–432. https://doi.org/10.1016/0006-2952(81)90626-2

    Article  Google Scholar 

  34. OliverH L, NiraJ R, Farr AL, RoseJ R (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  Google Scholar 

  35. Belov Kirdajova D, Kriska J, Tureckova J, Anderova M (2020) Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells. Front Cell Neurosci 14:51. https://doi.org/10.3389/fncel.2020.00051

    Article  Google Scholar 

  36. Jayakumar AR, Norenberg MD (2016) Glutamine synthetase: role in neurological disorders. In: Schousboe A, Sonnewald U (eds) The glutamate/GABA-glutamine cycle. Springer International Publishing, Cham, pp 327–350

    Chapter  Google Scholar 

  37. Tao T, Liu M, Chen M et al (2020) Natural medicine in neuroprotection for ischemic stroke: challenges and prospective. Pharmacol Ther 216:107695. https://doi.org/10.1016/j.pharmthera.2020.107695

    Article  Google Scholar 

  38. Kim AY, Jeong K-H, Lee JH et al (2017) Glutamate dehydrogenase as a neuroprotective target against brain ischemia and reperfusion. Neuroscience 340:487–500. https://doi.org/10.1016/j.neuroscience.2016.11.007

    Article  Google Scholar 

  39. Kim AY, Baik EJ (2019) Glutamate dehydrogenase as a neuroprotective target against neurodegeneration. Neurochem Res 44:147–153. https://doi.org/10.1007/s11064-018-2467-1

    Article  Google Scholar 

  40. Andersen JV, Markussen KH, Jakobsen E et al (2021) Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 196:108719. https://doi.org/10.1016/j.neuropharm.2021.108719

    Article  Google Scholar 

  41. Gower A, Tiberi M (2018) The intersection of central dopamine system and stroke: potential avenues aiming at enhancement of motor recovery. Front Synaptic Neurosci. https://doi.org/10.3389/fnsyn.2018.00018

    Article  Google Scholar 

  42. Obi K, Amano I, Takatsuru Y (2018) Role of dopamine on functional recovery in the contralateral hemisphere after focal stroke in the somatosensory cortex. Brain Res 1678:146–152. https://doi.org/10.1016/j.brainres.2017.10.022

    Article  Google Scholar 

  43. Robba C, Battaglini D, Samary CS et al (2020) Ischaemic stroke-induced distal organ damage: pathophysiology and new therapeutic strategies. Intensive Care Med Exp 8:23. https://doi.org/10.1186/s40635-020-00305-3

    Article  Google Scholar 

  44. Behl T, Kaur D, Sehgal A et al (2021) Role of monoamine oxidase activity in Alzheimer’s disease: an insight into the therapeutic potential of inhibitors. Molecules 26:3724. https://doi.org/10.3390/molecules26123724

    Article  Google Scholar 

  45. Huang K-L, Hsiao I-T, Ho M-Y et al (2020) Investigation of reactive astrogliosis effect on post-stroke cognitive impairment. J Neuroinflammation 17:308. https://doi.org/10.1186/s12974-020-01985-0

    Article  Google Scholar 

  46. Choi-Kwon S, Ko M, Jun S-E et al (2017) Post-stroke fatigue may be associated with the promoter region of a monoamine oxidase a gene polymorphism. Cerebrovasc Dis 43:54–58. https://doi.org/10.1159/000450894

    Article  Google Scholar 

  47. Di Giovanni G, Svob Strac D, Sole M et al (2016) Monoaminergic and histaminergic strategies and treatments in brain diseases. Front Neurosci. https://doi.org/10.3389/fnins.2016.00541

    Article  Google Scholar 

  48. Kiewert C, Mdzinarishvili A, Hartmann J et al (2010) Metabolic and transmitter changes in core and penumbra after middle cerebral artery occlusion in mice. Brain Res 1312:101–107. https://doi.org/10.1016/j.brainres.2009.11.068

    Article  Google Scholar 

  49. Song YS, Lee SH, Jung JH et al (2021) TSPO expression modulatory effect of acetylcholinesterase inhibitor in the ischemic stroke rat model. Cells 10:1350. https://doi.org/10.3390/cells10061350

    Article  Google Scholar 

  50. Ben Assayag E, Shenhar-Tsarfaty S, Ofek K et al (2010) Serum cholinesterase activities distinguish between stroke patients and controls and predict 12-month mortality. Mol Med 16:278–286. https://doi.org/10.2119/molmed.2010.00015

    Article  Google Scholar 

  51. Caeiro L, Novais F, Saldanha C et al (2021) The role of acetylcholinesterase and butyrylcholinesterase activity in the development of delirium in acute stroke. Cereb Circ Cogn Behav 2:100017. https://doi.org/10.1016/j.cccb.2021.100017

    Article  Google Scholar 

  52. Chen Y-C, Chou W-H, Fang C-P et al (2019) Serum level and activity of butylcholinesterase: a biomarker for post-stroke dementia. J Clin Med 8:1778. https://doi.org/10.3390/jcm8111778

    Article  Google Scholar 

  53. Işık M, Beydemir Ş, Yılmaz A et al (2017) Oxidative stress and mRNA expression of acetylcholinesterase in the leukocytes of ischemic patients. Biomed Pharmacother 87:561–567. https://doi.org/10.1016/j.biopha.2017.01.003

    Article  Google Scholar 

  54. Tan ECK, Johnell K, Garcia-Ptacek S et al (2018) Acetylcholinesterase inhibitors and risk of stroke and death in people with dementia. Alzheimers Dement 14:944–951. https://doi.org/10.1016/j.jalz.2018.02.011

    Article  Google Scholar 

  55. Wakisaka Y, Matsuo R, Nakamura K et al (2021) Pre-stroke cholinesterase inhibitor treatment is beneficially associated with functional outcome in patients with acute ischemic stroke and pre-stroke dementia: the Fukuoka stroke registry. Cerebrovasc Dis 50:390–396. https://doi.org/10.1159/000514368

    Article  Google Scholar 

  56. Shi M, Cao L, Cao X et al (2018) DR-region of Na+/K+ ATPase is a target to treat excitotoxicity and stroke. Cell Death Dis 10:1–15. https://doi.org/10.1038/s41419-018-1230-5

    Article  Google Scholar 

  57. Zhu M, Sun H, Cao L et al (2022) Role of Na+/K+-ATPase in ischemic stroke: in-depth perspectives from physiology to pharmacology. J Mol Med 100:395–410. https://doi.org/10.1007/s00109-021-02143-6

    Article  Google Scholar 

  58. Mandal J, Chakraborty A, Chandra A (2016) Altered acetylcholinesterase and Na+-K+ ATPase activities in different areas of brain in relation to thyroid gland function and morphology under the influence of excess iodine. Int J Pharm Clin Res 8:1564–1573

    Google Scholar 

  59. Matchkov VV, Krivoi II (2016) Specialized functional diversity and interactions of the Na, K-ATPase. Front Physiol 7:179

    Article  Google Scholar 

  60. Pivovarov AS, Calahorro F, Walker RJ (2018) Na+/K+-pump and neurotransmitter membrane receptors. Invert Neurosci 19:1. https://doi.org/10.1007/s10158-018-0221-7

    Article  Google Scholar 

  61. Brouns R, Van Hemelrijck A, Drinkenburg WH et al (2010) Excitatory amino acids and monoaminergic neurotransmitters in cerebrospinal fluid of acute ischemic stroke patients. Neurochem Int 56:865–870. https://doi.org/10.1016/j.neuint.2009.12.014

    Article  Google Scholar 

  62. Puginier E, Bharatiya R, Chagraoui A et al (2019) Early neurochemical modifications of monoaminergic systems in the R6/1 mouse model of Huntington’s disease. Neurochem Int 128:186–195. https://doi.org/10.1016/j.neuint.2019.05.001

    Article  Google Scholar 

  63. Joers JM, Deelchand DK, Lyu T et al (2018) Neurochemical abnormalities in premanifest and early spinocerebellar ataxias. Ann Neurol 83:816–829. https://doi.org/10.1002/ana.25212

    Article  Google Scholar 

  64. de Havenon A, Southerland AM (2018) In large vessel occlusive stroke, time is brain… but collaterals are time. Neurology 90:153–154. https://doi.org/10.1212/WNL.0000000000004870

    Article  Google Scholar 

  65. Handayani ES, Nurmasitoh T, Akhmad SA et al (2018) Effect of BCCAO duration and animal models sex on brain ischemic volume after 24 hours reperfusion. Bangladesh J Med Sci 17:129–137. https://doi.org/10.3329/bjms.v17i1.35293

    Article  Google Scholar 

  66. Grefkes C, Fink GR (2020) Recovery from stroke: current concepts and future perspectives. Neurol Res Pract 2:17. https://doi.org/10.1186/s42466-020-00060-6

    Article  Google Scholar 

  67. Liang J, Han R, Zhou B (2021) Metabolic reprogramming: strategy for ischemic stroke treatment by ischemic preconditioning. Biology 10:424. https://doi.org/10.3390/biology10050424

    Article  Google Scholar 

  68. Yang S-H, Lou M, Luo B et al (2018) Precision medicine for ischemic stroke, let us move beyond time is brain. Transl Stroke Res 9:93–95. https://doi.org/10.1007/s12975-017-0566-y

    Article  Google Scholar 

  69. Lu J, Mei Q, Hou X et al (2021) Imaging acute stroke: from one-size-fit-all to biomarkers. Front Neurol 12:697779. https://doi.org/10.3389/fneur.2021.697779

    Article  Google Scholar 

  70. Fonarow GC, Smith EE, Saver JL et al (2011) Improving door-to-needle times in acute ischemic stroke. Stroke 42:2983–2989. https://doi.org/10.1161/STROKEAHA.111.621342

    Article  Google Scholar 

  71. Song S (2014) Hyperacute management of ischemic stroke. Semin Neurol 33:427–435. https://doi.org/10.1055/s-0033-1364213

    Article  Google Scholar 

  72. Rogalewski A, Schäbitz W-R (2022) Stroke recovery enhancing therapies: lessons from recent clinical trials. Neural Regen Res 17:717. https://doi.org/10.4103/1673-5374.314287

    Article  Google Scholar 

  73. Tripathi AK, Singh AK (2021) Models and techniques in stroke biology. Springer, Singapore

    Book  Google Scholar 

Download references

Acknowledgements

We thank the Department of Biotechnology, Government of India (DBT), and The World Academy of Science (TWAS) for the award of the DBT-TWAS Sandwich Postgraduate Fellowship to OOB (FR Number: 3240306353).

Funding

No specific grant from funding agencies in public, commercial, or non-profit organizations was received by this research.

Author information

Authors and Affiliations

Authors

Contributions

OBO and ACA contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by OBO, ZAA, and ACA. Research supervision and data validation were performed by ACA, SKJ and MTO. The first draft of the manuscript was written by OBO and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Olubukola Benedicta Ojo or Afolabi Clement Akinmoladun.

Ethics declarations

Conflict of interest

The authors declare that there is no potential competing interest concerning funding, research, or personal relationships that could influence the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojo, O.B., Amoo, Z.A., Olaleye, M.T. et al. Time and Brain Region-Dependent Excitatory Neurochemical Alterations in Bilateral Common Carotid Artery Occlusion Global Ischemia Model. Neurochem Res 48, 96–116 (2023). https://doi.org/10.1007/s11064-022-03732-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03732-8

Keywords

Navigation