Skip to main content

Advertisement

Log in

Context-Specific Tolerance and Pharmacological Changes in the Infralimbic Cortex-Nucleus Accumbens Shell Pathway Evoked by Ketamine

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Like other drugs, ketamine is abused due to its ability to act as a positive reinforcer in the control of behavior, just as natural reinforcers do. Besides, through Pavlovian conditioning, tolerance to drug effects can become conditioned to specific contextual cues showing that environmental stimuli can act as powerful mediators of craving and relapse. In the present study, we shall investigate the effects of long-term ketamine administration and withdrawal on behavioral measures and emotionality, the drug-context-specific influence on the tolerance to the sedative effects of an anesthetic dose of ketamine, and the neuropharmacological events underlying this phenomenon, in rats conditioned with 10 mg/kg of ketamine and later challenged with a dose of ketamine of 80 mg/kg in a familiar and non-familiar environment. Variations in dopamine and serotonin efflux in the infralimbic cortex-nucleus accumbens shell circuitry (IL-NAcSh) was further recorded in the same conditions. Our results highlight that besides its well-known reinforcing properties, ketamine also shares the ability to induce behavioral and pharmacological conditioned tolerance, associated with increases in cortical (IL), and decreases in striatal (NAcSh) dopamine release. To our knowledge, we are presenting the first set of behavioral and neurochemical data showing that, like other drugs of abuse, ketamine can induce learned context-specific tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52:998–1007

    Article  CAS  PubMed  Google Scholar 

  2. Di Chiara G, North RA (1992) Neurobiology of opiate abuse. Trends Pharmacol Sci 13:185–193

    Article  PubMed  Google Scholar 

  3. Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13:177–184

    Article  CAS  PubMed  Google Scholar 

  4. Grigson PS (2002) Like drugs for chocolate: separate rewards modulated by common mechanisms? Physiol Behav 76:389–395

    Article  CAS  PubMed  Google Scholar 

  5. Suzuki T, Kato H, Aoki T et al (2000) Effects of the non-competitive NMDA receptor antagonist ketamine on morphine-induced place preference in mice. Life Sci 67:383–389

    Article  CAS  PubMed  Google Scholar 

  6. Gao C, Chen LW, Chen J et al (2003) Ohmefentanyl stereoisomers induce changes of CREB phosphorylation in hippocampus of mice in conditioned place preference paradigm. Cell Res 13:29–34

    Article  CAS  PubMed  Google Scholar 

  7. Suzuki T, Aoki T, Kato H et al (1999) Effects of the 5-HT(3) receptor antagonist ondansetron on the ketamine- and dizocilpine-induced place preferences in mice. Eur J Pharmacol 385:99–102

    Article  CAS  PubMed  Google Scholar 

  8. Adinoff B (2004) Neurobiologic processes in drug reward and addiction. Harv Rev Psychiatry 12:305–320

    Article  PubMed  PubMed Central  Google Scholar 

  9. Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35:4–26

    Article  PubMed  Google Scholar 

  10. Siegel S, Larson SJ (1996) Disruption of tolerance to the ataxic effect of ethanol by an extraneous stimulus. Pharmacol Biochem Behav 55:125–130

    Article  CAS  PubMed  Google Scholar 

  11. Woods SC, Ramsay DS (2000) Pavlovian influences over food and drug intake. Behav Brain Res 110:175–182

    Article  CAS  PubMed  Google Scholar 

  12. Robinson TE, Berridge KC (2003) Addiction. Annu Rev Psychol 54:25–53

    Article  PubMed  Google Scholar 

  13. Trujillo KA, Heller CY (2020) Ketamine sensitization: influence of dose, environment, social isolation and treatment interval. Behav Brain Res 378:112271

    Article  CAS  PubMed  Google Scholar 

  14. Holcomb HH, Lahti AC, Medoff DR et al (2001) Sequential regional cerebral blood flow brain scans using PET with H2(15)O demonstrate ketamine actions in CNS dynamically. Neuropsychopharmacology 25:165–172

    Article  CAS  PubMed  Google Scholar 

  15. Floresco SB, Zhang Y, Enomoto T (2009) Neural circuits subserving behavioral flexibility and their relevance to schizophrenia. Behav Brain Res 204:396–409

    Article  PubMed  Google Scholar 

  16. Kalivas PW, Lalumiere RT, Knackstedt L, Shen H (2009) Glutamate transmission in addiction. Neuropharmacology 56(Suppl 1):169–173

    Article  CAS  PubMed  Google Scholar 

  17. Peters J, Kalivas P, Quirk G (2010) Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Memory 30:279–288

    Google Scholar 

  18. Fortier CB, Leritz EC, Salat DH et al (2011) Reduced cortical thickness in abstinent alcoholics and association with alcoholic behavior. Alcohol Clin Exp Res 35:2193–2201

    Article  PubMed  PubMed Central  Google Scholar 

  19. Richard JM, Berridge KC (2013) Prefrontal cortex modulates desire and dread generated by nucleus accumbens glutamate disruption. Biol Psychiatry 73:360–370

    Article  CAS  PubMed  Google Scholar 

  20. Vollenweider FX, Vontobel P, Oye I et al (2000) Effects of (S)-ketamine on striatal dopamine: a [11C]raclopride PET study of a model psychosis in humans. J Psychiatr Res 34:35–43

    Article  CAS  PubMed  Google Scholar 

  21. Lindefors N, Barati S, OConnor WT, (1997) Differential effects of single and repeated ketamine administration on dopamine, serotonin and GABA transmission in rat medial prefrontal cortex. Brain Res 759:205–212

    Article  CAS  PubMed  Google Scholar 

  22. O’Brien CP, Childress AR, McLellan AT, Ehrman R (1992) Classical conditioning in drug-dependent humans. Ann NY Acad Sci 654:400–415

    Article  PubMed  Google Scholar 

  23. Bouton ME (2002) Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biol Psychiatry 52:976–986

    Article  PubMed  Google Scholar 

  24. Simon P, Dupuis R, Costentin J (1994) Thigmotaxis as an index of anxiety in mice. influence of dopaminergic transmissions. Behav Brain Res 61:59–64

    Article  CAS  PubMed  Google Scholar 

  25. Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33

    Article  CAS  PubMed  Google Scholar 

  26. Levin-Arama M, Abraham L, Waner T et al (2016) Subcutaneous compared with intraperitoneal ketamine xylazine for anesthesia of mice. J Am Assoc Lab Anim Sci 55:794–800

    PubMed  PubMed Central  Google Scholar 

  27. Turner PV, Brabb T, Pekow C, Vasbinder MA (2011) Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci 50:600–613

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Incrocci RM, Paliarin F, Nobre MJ (2018) Prelimbic NMDA receptors stimulation mimics the attenuating effects of clozapine on the auditory electrophysiological rebound induced by ketamine withdrawal. Neurotoxicology 69:1–10

    Article  CAS  PubMed  Google Scholar 

  29. Bozarth MA (1987) Conditioned place preference (chapter 14): a parametric analysis using systemic heroin injections. In: Bozarth MA (ed) Methods of assessing the reinforcer properties of abused drugs, 1st edn. Springer, New York

    Chapter  Google Scholar 

  30. Prus AJ, James JR, Rosecrans JA (2009) Conditioned place preference. In: Buccafusco JJ (ed) Methods of behavior analysis in neuroscience, 2nd edn. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  31. Lipkind D, Sakov A, Kafkafi N et al (2004) New replicable anxiety-related measures of wall vs center behavior of mice in the open field. J Appl Physiol 97:347–359

    Article  PubMed  Google Scholar 

  32. Sestakova N, Puzserova A, Kluknavsky M, Bernatova I (2013) Determination of motor activity and anxiety-related behaviour in rodents: methodological aspects and role of nitric oxide. Interdiscip Toxicol 6:126–135

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gould TD, Dao DT, Kovacsics CE (2009) The open field test. In: Gould TD (ed) Mood and anxiety related phenotypes in mice: characterization using behavioral tests. Humana Press, Totowa, pp 1–20

    Chapter  Google Scholar 

  34. Feyissa DD, Aher YD, Engidawork E et al (2017) Individual differences in male rats in a behavioral test battery: a multivariate statistical approach. Front Behav Neurosci 11:26

    Article  PubMed  PubMed Central  Google Scholar 

  35. Giroux MC, Hélie P, Burns P, Vachon P (2015) Anesthetic and pathological changes following high doses of ketamine and xylazine in Sprague Dawley rats. Exp Anim 64:253–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dodelet-Devillers A, Zullian C, Beaudry F et al (2016) Physiological and pharmacokinetic effects of multilevel caging on Sprague Dawley rats under ketamine-xylazine anesthesia. Exp Anim 65:383–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Siegel S (1975) Evidence from rats that morphine tolerance is a learned response. J Comp Physiol Psychol 89:498–506

    Article  CAS  PubMed  Google Scholar 

  38. Siegel S, Hinson RE, Krank MD, McCully J (1982) Heroin “overdose” death: contribution of drug-associated environmental cues. Science 216:436–437

    Article  CAS  PubMed  Google Scholar 

  39. Sturman O, Germain P-L, Bohacek J (2018) Exploratory rearing: a context- and stress-sensitive behavior recorded in the open-field test. Stress (Amsterdam, Netherlands) 21:443–452

    Article  Google Scholar 

  40. Paxinos GWC (2008) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, New York

    Google Scholar 

  41. Chaurasia CS, Chen C-E, Ashby CR (1999) In vivo on-line HPLC-microdialysis: simultaneous detection of monoamines and their metabolites in awake freely-moving rats. J Pharm Biomed Anal 19:413–422

    Article  CAS  PubMed  Google Scholar 

  42. Du Y, Du L, Cao J et al (2017) Levo-tetrahydropalmatine inhibits the acquisition of ketamine-induced conditioned place preference by regulating the expression of ERK and CREB phosphorylation in rats. Behav Brain Res 317:367–373

    Article  CAS  PubMed  Google Scholar 

  43. Li F, Fang Q, Liu Y et al (2008) Cannabinoid CB(1) receptor antagonist rimonabant attenuates reinstatement of ketamine conditioned place preference in rats. Eur J Pharmacol 589:122–126

    Article  CAS  PubMed  Google Scholar 

  44. Xu DD, Mo ZX, Yung KKL et al (2006) Individual and combined effects of methamphetamine and ketamine on conditioned place preference and NR1 receptor phosphorylation in rats. Neurosignals 15:322–331

    Article  PubMed  Google Scholar 

  45. Marglin SH, Milano WC, Mattie ME, Reid LD (1989) PCP and conditioned place preferences. Pharmacol Biochem Behav 33:281–283

    Article  CAS  PubMed  Google Scholar 

  46. Del Pozo E, Barrios M, Baeyens JM (1996) The NMDA receptor antagonist dizocilpine (MK-801) stereoselectively inhibits morphine-induced place preference conditioning in mice. Psychopharmacology 125:209–213

    Article  PubMed  Google Scholar 

  47. De Luca MT, Badiani A (2011) Ketamine self-administration in the rat: evidence for a critical role of setting. Psychopharmacology 214:549–556

    Article  PubMed  Google Scholar 

  48. Venniro M, Mutti A, Chiamulera C (2015) Pharmacological and non-pharmacological factors that regulate the acquisition of ketamine self-administration in rats. Psychopharmacology 232:4505–4514

    Article  CAS  PubMed  Google Scholar 

  49. Zhai H, Wu P, Chen S et al (2008) Effects of scopolamine and ketamine on reconsolidation of morphine conditioned place preference in rats. Behav Pharmacol 19:211–216

    Article  CAS  PubMed  Google Scholar 

  50. Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chatterjee M, Verma R, Ganguly S, Palit G (2012) Neurochemical and molecular characterization of ketamine-induced experimental psychosis model in mice. Neuropharmacology 63:1161–1171

    Article  CAS  PubMed  Google Scholar 

  52. Kim S-Y, Lee H, Kim H-J et al (2011) In vivo and ex vivo evidence for ketamine-induced hyperglutamatergic activity in the cerebral cortex of the rat: Potential relevance to schizophrenia. NMR Biomed 24:1235–1242

    Article  CAS  PubMed  Google Scholar 

  53. Razoux F, Garcia R, Léna I (2007) Ketamine, at a dose that disrupts motor behavior and latent inhibition, enhances prefrontal cortex synaptic efficacy and glutamate release in the nucleus accumbens. Neuropsychopharmacology 32:719–727

    Article  CAS  PubMed  Google Scholar 

  54. Meliska CJ, Trevor AJ (1978) Differential effects of ketamine on schedule-controlled responding and motility. Pharmacol Biochem Behav 8:679–683

    Article  CAS  PubMed  Google Scholar 

  55. Hetzler BE, Swain Wautlet B (1985) Ketamine-induced locomotion in rats in an open-field. Pharmacol Biochem Behav 22:653–655

    Article  CAS  PubMed  Google Scholar 

  56. Irifune M, Shimizu T, Nomoto M (1991) Ketamine-induced hyperlocomotion associated with alteration of presynaptic components of dopamine neurons in the nucleus accumbens of mice. Pharmacol Biochem Behav 40:399–407

    Article  CAS  PubMed  Google Scholar 

  57. Uchihashi Y, Kuribara H, Morita T, Fujita T (1993) The repeated administration of ketamine induces an enhancement of its stimulant action in mice. Jpn J Pharmacol 61:149–151

    Article  CAS  PubMed  Google Scholar 

  58. Ribeiro PO, Rodrigues PC, Valentim AM, Antunes LM (2013) A single intraperitoneal injection of ketamine does not affect spatial working, reference memory or neurodegeneration in adult mice: an animal study. Eur J Anaesthesiol 30:618–626

    Article  CAS  PubMed  Google Scholar 

  59. Chatterjee M, Ganguly S, Srivastava M, Palit G (2011) Effect of “chronic” versus “acute” ketamine administration and its “withdrawal” effect on behavioural alterations in mice: implications for experimental psychosis. Behav Brain Res 216:247–254

    Article  CAS  PubMed  Google Scholar 

  60. Pitsikas N, Georgiadou G, Delis F, Antoniou K (2019) Effects of anesthetic ketamine on anxiety-like behaviour in rats. Neurochem Res 44:829–838

    Article  CAS  PubMed  Google Scholar 

  61. Trujillo KA, Smith ML, Sullivan B et al (2011) The neurobehavioral pharmacology of ketamine: implications for drug abuse, addiction, and psychiatric disorders. ILAR J 52:366–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gigliucci V, O’Dowd G, Casey S et al (2013) Ketamine elicits sustained antidepressant-like activity via a serotonin-dependent mechanism. Psychopharmacology 228:157–166

    Article  CAS  PubMed  Google Scholar 

  63. López-Gil X, Jiménez-Sánchez L, Campa L et al (2019) Role of serotonin and noradrenaline in the rapid antidepressant action of ketamine. ACS Chem Neurosci 10:3318–3326

    Article  PubMed  Google Scholar 

  64. Pham TH, Mendez-David I, Defaix C et al (2017) Ketamine treatment involves medial prefrontal cortex serotonin to induce a rapid antidepressant-like activity in BALB/cJ mice. Neuropharmacology 112:198–209

    Article  CAS  PubMed  Google Scholar 

  65. Fuchikami M, Thomas A, Liu R et al (2015) Optogenetic stimulation of infralimbic PFC reproduces ketamine’s rapid and sustained antidepressant actions. PNAS 112:8106–8111

    Article  CAS  PubMed  Google Scholar 

  66. Grady SE, Marsh TA, Tenhouse A, Klein K (2017) Ketamine for the treatment of major depressive disorder and bipolar depression: a review of the literature. Ment Health Clin 7:16–23

    Article  PubMed  Google Scholar 

  67. Shin SY, Baek NJ, Han SH, Min SS (2019) Chronic administration of ketamine ameliorates the anxiety- and aggressive-like behavior in adolescent mice induced by neonatal maternal separation. Korean J Physiol Pharmacol 23:81–87

    Article  CAS  PubMed  Google Scholar 

  68. Hayase T, Yamamoto Y, Yamamoto K (2006) Behavioral effects of ketamine and toxic interactions with psychostimulants. BMC Neurosci 7:25

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ramsay DS, Woods SC (1997) Biological consequences of drug administration: implications for acute and chronic tolerance. Psychol Rev 104:170–193

    Article  CAS  PubMed  Google Scholar 

  70. Verma A, Moghaddam B (1996) NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. J Neurosci 16:373–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kokkinou M, Ashok AH, Howes OD (2018) The effects of ketamine on dopaminergic function: meta-analysis and review of the implications for neuropsychiatric disorders. Mol Psychiatry 23:59–69

    Article  CAS  PubMed  Google Scholar 

  72. Millan EZ, Marchant NJ, McNally GP (2011) Extinction of drug seeking. Behav Brain Res 217:454–462

    Article  CAS  PubMed  Google Scholar 

  73. Marchant NJ, Furlong TM, McNally GP (2010) Medial dorsal hypothalamus mediates the inhibition of reward seeking after extinction. J Neurosci 30:14102–14115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Castillo-Gómez E, Gómez-Climent MA, Varea E et al (2008) Dopamine acting through D2 receptors modulates the expression of PSA-NCAM, a molecule related to neuronal structural plasticity, in the medial prefrontal cortex of adult rats. Exp Neurol 214:97–111

    Article  PubMed  Google Scholar 

  75. Peters J, LaLumiere RT, Kalivas PW (2008) Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci 28:6046–6053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Peters J, Dieppa-Perea LM, Melendez LM, Quirk GJ (2010) Induction of fear extinction with hippocampal-infralimbic BDNF. Science 328:1288–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Anderson SM, Schmidt HD, Pierce RC (2006) Administration of the D2 dopamine receptor antagonist sulpiride into the shell, but not the core, of the nucleus accumbens attenuates cocaine priming-induced reinstatement of drug seeking. Neuropsychopharmacology 31:1452–1461

    Article  CAS  PubMed  Google Scholar 

  78. Yan QS, Reith ME, Jobe PC, Dailey JW (1997) Dizocilpine (MK-801) increases not only dopamine but also serotonin and norepinephrine transmissions in the nucleus accumbens as measured by microdialysis in freely moving rats. Brain Res 765:149–158

    Article  CAS  PubMed  Google Scholar 

  79. Brown P, Molliver ME (2000) Dual serotonin (5-HT) projections to the nucleus accumbens core and shell: relation of the 5-HT transporter to amphetamine-induced neurotoxicity. J Neurosci 20:1952–1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Parsons LH, Koob GF, Weiss F (1996) Extracellular serotonin is decreased in the nucleus accumbens during withdrawal from cocaine self-administration. Behav Brain Res 73:225–228

    Article  CAS  PubMed  Google Scholar 

  81. Weiss F, Parsons LH, Schulteis G et al (1996) Ethanol self-administration restores withdrawal-associated deficiencies in accumbal dopamine and 5-hydroxytryptamine release in dependent rats. J Neurosci 16:3474–3485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Birak KS, Higgs S, Terry P (2011) Conditioned tolerance to the effects of alcohol on inhibitory control in humans. Alcohol Alcohol 46:686–693

    Article  PubMed  Google Scholar 

  83. Diana M, Pistis M, Muntoni A, Gessa G (1995) Profound decrease of mesolimbic dopaminergic neuronal activity in morphine withdrawn rats. J Pharmacol Exp Ther 272:781–785

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by FAPESP (Proc. no. 2014/23690-5, 2017/18268-0). M.J. Nobre is the recipient of a Productivity Research Grant from CNPq (303144/2015-7). G.K. Silva- Cardoso holds a master scholarship from FAPESP (2015/17568-5). We declare that the sponsors have not been involved in or influenced the design, collection, analysis, or interpretation of study data, nor the writing of the report or the decision to submit it for publication. Moreover, the authors declare that they have no known competing for financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoel Jorge Nobre.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest concerning the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva-Cardoso, G.K., Nobre, M.J. Context-Specific Tolerance and Pharmacological Changes in the Infralimbic Cortex-Nucleus Accumbens Shell Pathway Evoked by Ketamine. Neurochem Res 46, 1686–1700 (2021). https://doi.org/10.1007/s11064-021-03300-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03300-6

Keywords

Navigation