Skip to main content
Log in

3,4,5-Tricaffeoylquinic Acid Attenuates Proteasome Inhibition-Mediated Programmed Cell Death in Differentiated PC12 cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The dysfunction of the proteasome system is suggested to be implicated in neuronal degeneration. Caffeoylquinic acid derivatives have demonstrated anti-oxidant and anti-inflammatory effects. However, the effect of 3,4,5-tricaffeoylquinic acid on the neuronal cell death induced by proteasome inhibition has not been studied. Therefore, in the respect of cell death process, we assessed the effect of 3,4,5-tricaffeoylquinic acid on the proteasome inhibition-induced programmed cell death using differentiated PC12 cells. The proteasome inhibitors MG132 and MG115 induced a decrease in Bid, Bcl-2, and survivin protein levels, an increase in Bax, loss of the mitochondrial transmembrane potential, cytochrome c release, activation of caspases (-8, -9 and -3), and an increase in the tumor suppressor p53 levels. Treatment with 3,4,5-tricaffeoylquinic acid attenuated the proteasome inhibitor-induced changes in the programmed cell death-related protein levels, formation of reactive oxygen species, GSH depletion and cell death. The results show that 3,4,5-tricaffeoylquinic acid may attenuate the proteasome inhibitor-induced programmed cell death in PC12 cells by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. The preventive effect of 3,4,5-tricaffeoylquinic acid appears to be attributed to its inhibitory effect on the formation of reactive oxygen species and depletion of GSH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dimant H, Ebrahimi-Fakhari D, McLean PJ (2012) Molecular chaperones and co-chaperones in Parkinson disease. Neuroscientist 18:589–601. doi:10.1177/1073858412441372

    Article  PubMed Central  PubMed  Google Scholar 

  2. Ebrahimi-Fakhari D, Saidi LJ, Wahlster L (2013) Molecular chaperones and protein folding as therapeutic targets in Parkinson’s disease and other synucleinopathies. Acta Neuropathol Commun 1:79. doi:10.1186/2051-5960-1-79

    Article  PubMed Central  PubMed  Google Scholar 

  3. Osellame LD, Duchen MR (2014) Quality control gone wrong: mitochondria, lysosomal storage disorders and neurodegeneration. Br J Pharmacol 171:1958–1972. doi:10.1111/bph.12453

    Article  CAS  PubMed  Google Scholar 

  4. Miwa H, Kubo T, Suzuki A, Nishi K, Kondo T (2005) Retrograde dopaminergic neuron degeneration following intrastriatal proteasome inhibition. Neurosci Lett 380:93–98. doi:10.1016/j.neulet.2005.01.024

    CAS  PubMed  Google Scholar 

  5. Sun F, Anantharam V, Zhang D, Latchoumycandane C, Kanthasamy A, Kanthasamy AG (2006) Proteasome inhibitor MG-132 induces dopaminergic degeneration in cell culture and animal models. Neurotoxicology 27:807–815. doi:10.1016/j.neuro.2006.06.006

    Article  CAS  PubMed  Google Scholar 

  6. Nagley P, Higgins GC, Atkin JD, Philip M, Beart PM (2010) Multifaceted deaths orchestrated by mitochondria in neurons. Biochim Biophys Acta 1802:167–185. doi:10.1016/j.bbadis.2009.09.004

    Article  CAS  PubMed  Google Scholar 

  7. Cheung NS, Choy MS, Halliwell B, Teo TS, Bay BH, Lee AY, Qi RZ, Koh VH, Whiteman M, Koay ES, Chiu LL, Zhu HJ, Wong KP, Beart PM, Cheung HC (2004) Lactacystin-induced apoptosis of cultured mouse cortical neurons is associated with accumulation of PTEN in the detergent-resistant membrane fraction. Cell Mol Life Sci 61:1926–1934

    Article  CAS  PubMed  Google Scholar 

  8. Suh J, Lee YA, Gwag BJ (2005) Induction and attenuation of neuronal apoptosis by proteasome inhibitors in murine cortical cell cultures. J Neurochem 95:684–694. doi:10.1111/j.1471-4159.2005.03393.x

    Article  CAS  PubMed  Google Scholar 

  9. Sun F, Kanthasamy A, Song C, Yang Y, Anantharam V, Kanthasamy AG (2008) Proteasome inhibitor-induced apoptosis is mediated by positive feedback amplification of PKCδ proteolytic activation and mitochondrial translocation. J Cell Mol Med 12:2467–2481. doi:10.1111/j.1582-4934.2008.00293.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Chong KW, Chen MJ, Koay ES, Wong BS, Lee AY, Russo-Marie F, Cheung NS (2010) Annexin A3 is associated with cell death in lactacystin-mediated neuronal injury. Neurosci Lett 485:129–133. doi:10.1016/j.neulet.2010.08.089

    CAS  PubMed  Google Scholar 

  11. Papa L, Gomes E, Rockwell P (2007) Reactive oxygen species induced by proteasome inhibition in neuronal cells mediate mitochondrial dysfunction and a caspase-independent cell death. Apoptosis 12:1389–1405. doi:10.1007/s10495-007-0069-5

    Article  CAS  PubMed  Google Scholar 

  12. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922. doi:10.1007/s10495-007-0756-2

    Article  CAS  PubMed  Google Scholar 

  13. Reale M, Pesce M, Priyadashini M, Kamal MA, Patruno A (2012) Mitochondria as an easy target to oxidative stress events in Parkinson’s disease. CNS Neurol Disord: Drug Targets 11:430–438. doi:10.2174/187152712800792875

    Article  CAS  Google Scholar 

  14. Franco R, Cidlowski JA (2006) SLCO/OATP-like transport of glutathione in FasL-induced apoptosis: glutathione efflux is coupled to an organic anion exchange and is necessary for the progression of the execution phase of apoptosis. J Biol Chem 281:29542–29557. doi:10.1074/jbc.M602500200

    Article  CAS  PubMed  Google Scholar 

  15. Circu ML, Aw TY (2008) Glutathione and apoptosis. Free Radic Res 42:689–706. doi:10.1080/10715760802317663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kim SS, Park RY, Jeon HJ, Kwon YS, Chun W (2005) Neuroprotective effects of 3,5-dicaffeoylquinic acid on hydrogen peroxide-induced cell death in SH-SY5Y cells. Phytother Res 19:243–245. doi:10.1002/ptr.1652

    Article  CAS  PubMed  Google Scholar 

  17. Park KH, Park M, Choi SE, Jeong MS, Kwon JH, Oh MH, Seo SJ, Lee MW (2009) The anti-oxidative and anti-inflammatory effects of caffeoyl derivatives from the roots of Aconitum koreanum R. Raymond. Biol Pham Bull 32:2029–2033. doi:10.1248/bpb.32.2029

    Article  CAS  Google Scholar 

  18. dos Santos MD, Chen G, Almeida MC, Soares DM, de Souza GE, Lopes NP, Lantz RC (2010) Effects of caffeoylquinic acid derivatives and C-flavonoid from Lychnophora ericoides on in vitro inflammatory mediator production. Nat Prod Commun 5:733–740

    PubMed Central  PubMed  Google Scholar 

  19. Lee CS, Lee SA, Kim YJ, Seo SJ, Lee MW (2011) 3,4,5-Tricaffeoylquinic acid inhibits tumor necrosis factor-α-stimulated production of inflammatory mediators in keratinocytes via suppression of Akt- and NF-κB-pathways. Int Immunopharmacol 11:1715–1723. doi:10.1016/j.intimp.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  20. Bonuccelli U, Del Dotto P (2006) New pharmacological horizons in the treatment of Parkinson disease. Neurology 67(7 Suppl 2):S30–S38

    Article  CAS  PubMed  Google Scholar 

  21. Tatton WG, Chalmers-Redman RME, Ju WJH, Mammen M, Carlil GW, Pong AW, Tatton NA (2002) Propargylamines induce antiapoptotic new protein synthesis in serum-and nerve growth factor (NGF)-withdrawn, NGF-differentiated PC-12 cells. J Pharmacol Exp Ther 301:753–764. doi:10.1124/jpet.301.2.753

    Article  CAS  PubMed  Google Scholar 

  22. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  23. Andrisano V, Ballardini R, Hrelia P, Cameli N, Tosti A, Gotti R, Cavrini V (2001) Studies on the photostability and in vitro phototoxicity of labetalol. Eur J Pharm Sci 12:495–504. doi:10.1016/S0928-0987(00)00218-9

    Article  CAS  PubMed  Google Scholar 

  24. Berthier A, Lemaire-Ewing S, Prunet C, Monier S, Athias A, Bessede G, Pais de Barros JP, Laubriet A, Gambert P, Lizard G, Néel D (2004) Involvement of a calcium-dependent dephosphorylation of BAD associated with the localization of Trpc-1 within lipid rafts in 7-ketocholesterol-induced THP-1 cell apoptosis. Cell Death Differ 11:897–905. doi:10.1038/sj.cdd.440143

    Article  CAS  PubMed  Google Scholar 

  25. Fu W, Luo H, Parthasarathy S, Mattson MP (1998) Catecholamines potentiate amyloid (-peptide neurotoxicity: involvement of oxidative stress, mitochondrial dysfunction, and perturbed calcium homeostasis. Neurobiol Dis 5:229–243. doi:10.1006/nbdi.1998.0192

    Article  CAS  PubMed  Google Scholar 

  26. van Klaveren RJ, Hoet PHM, Pype JL, Demedts M, Nemery B (1997) Increase in (-glutamyltransferase by glutathione depletion in rat type II pneumocytes. Free Radic Biol Med 22:525–534. doi:10.1016/S0891-5849(96)00375-9

    Article  PubMed  Google Scholar 

  27. Armstrong JS (2006) Mitochondria: a target for cancer therapy. Br J Pharmacol 147:239–248. doi:10.1038/sj.bjp.0706556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kadota T, Yamaai T, Saito Y, Akita Y, Kawashima S, Moroi K, Inagaki N, Kadota K (1996) Expression of dopamine transporter at the tips of growing neurites of PC12 cells. J Histochem Cytochem 44:989–996. doi:10.1177/44.9.8773564

    Article  CAS  PubMed  Google Scholar 

  29. Das KP, Freudenrich TM, Mundy WR (2004) Assessment of PC12 cell differentiation and neurite growth: a comparison of morphological and neurochemical measures. Neurotoxicol Teratol 26:397–406. doi:10.1016/j.ntt.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  30. Rong P, Bennie AM, Epa WR, Barrett GL (1999) Nerve growth factor determines survival and death of PC12 cells by regulation of the bcl-x, bax, and caspase-3 genes. J Neurochem 72:2294–2300. doi:10.1046/j.1471-4159.1999.0722294.x

    Article  CAS  PubMed  Google Scholar 

  31. Lindenboim L, Yuan J, Stein R (2000) Bcl-xS and Bax induce different apoptotic pathways in PC12 cells. Oncogene 19:1783–1793

    Article  CAS  PubMed  Google Scholar 

  32. Misiti F, Orsini F, Clementi ME, Lattanzi W, Giardina B, Michetti F (2008) Mitochondrial oxygen consumption inhibition importance for TMT-dependent cell death in undifferentiated PC12 cells. Neurochem Int 52:1092–1099. doi:10.1016/j.neuint.2007.11.008

    Article  CAS  PubMed  Google Scholar 

  33. Hu W, Kavanagh JJ (2003) Anticancer therapy targeting the apoptotic pathway. Lancet Oncol 4:721–729. doi:10.1016/S1470-2045(03)01277-4

    Article  CAS  PubMed  Google Scholar 

  34. Camins A, Pallas M, Silvestre JS (2008) Apoptotic mechanisms involved in neurodegenerative diseases: experimental and therapeutic approaches. Methods Fin Exp Clin Pharmacol 30:43–65. doi:10.1358/mf.2008.30.1.1090962

    Article  CAS  Google Scholar 

  35. Chipuk JE, Green DR (2006) Dissecting p53-dependent apoptosis. Cell Death Differ 13:994–1002. doi:10.1038/sj.cdd.4401908

    Article  CAS  PubMed  Google Scholar 

  36. Chen F, Wang W, El-Deiry WS (2010) Current strategies to target p53 in cancer. Biochem Pharmacol 80:724–730. doi:10.1016/j.bcp.2010.04.031

    Article  CAS  PubMed  Google Scholar 

  37. Zhang HG, Wang J, Yang X, Hsu HC, Mountz JD (2004) Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene 23:2009–2015. doi:10.1038/sj.onc.1207373

    Article  CAS  PubMed  Google Scholar 

  38. Yew EH, Cheung NS, Choy MS, Qi RZ, Lee AY, Peng ZF, Melendez AJ, Koay ES, Chiu LL, Ng WL, Whiteman M, Kandiah J, Halliwell B (2005) Proteasome inhibition by lactacystin in primary neuronal cells induces both potentially neuroprotective and pro-apoptotic transcriptional responses: a microarray analysis. J Neurochem 94:943–956. doi:10.1111/j.1471-4159.2005.03220.x

    Article  CAS  PubMed  Google Scholar 

  39. Guo N, Peng Z (2013) MG132, a proteasome inhibitor, induces apoptosis in tumor cells. Asia Pac J Clin Oncol 9:6–11. doi:10.1111/j.1743-7563.2012.01535.x

    Article  PubMed  Google Scholar 

  40. Tokunaga F (2013) Linear ubiquitination-mediated NF-B regulation and its related disorders. J Biochem 154:313–323. doi:10.1093/jb/mvt079

    Article  CAS  PubMed  Google Scholar 

  41. Barnett SF, Bilodeau MT, Lindsley CW (2005) The Akt/PKB family of protein kinases: a review of small molecule inhibitors and progress towards target validation. Curr Top Med Chem 5:109–125. doi:10.2174/1568026053507714

    Article  CAS  PubMed  Google Scholar 

  42. Qazi AK, Hussain A, Hamid A, Qurishi Y, Majeed R, Ahmad M, Najar RA, Bhat JA, Singh SK, Zargar MA, Ali S, Saxena AK (2013) Recent development in targeting PI3K-Akt-mTOR signaling for anticancer therapeutic strategies. Anticancer Agents Med Chem 13:1552–1564. doi:10.2174/1871520613666131125123241

    Article  CAS  PubMed  Google Scholar 

  43. McCubrey JA, Steelman LS, Abrams SL, Lee JT, Chang F, Bertrand FE, Navolanic PM, Terrian DM, Fraklin RA, D’Assoro AB, Salisbury JL, Mazzarino MC, Stivala F, Libra M (2006) Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul 46:249–279. doi:10.1016/j.advenzreg.2006.01.004

    Article  CAS  PubMed  Google Scholar 

  44. Mignotte B, Vayssière JL (1998) Mitochondria and apoptosis. Eur J Biochem 252:1–15. doi:10.1046/j.1432-1327.1998.2520001.x

    Article  CAS  PubMed  Google Scholar 

  45. Franco R, Cidlowski JA (2009) Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 16:1303–1314. doi:10.1038/cdd.2009.107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Chung-Ang University Research Scholarship Grants in 2014, Chung-Ang University, Seoul, South Korea, and the Grant of the BK21plus Skin Barrier Network Human Resources Development Team, National Research Foundation of Korea, Ministry of Education, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, Y.J., Lee, D.H., Kim, Y.J. et al. 3,4,5-Tricaffeoylquinic Acid Attenuates Proteasome Inhibition-Mediated Programmed Cell Death in Differentiated PC12 cells. Neurochem Res 39, 1416–1425 (2014). https://doi.org/10.1007/s11064-014-1327-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1327-x

Keywords

Navigation