Skip to main content

Advertisement

Log in

Neuron Analysis of the Two-Point Singular Boundary Value Problems Arising in the Thermal Explosion’s Theory

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

The purpose of the present study is to present the neuron analysis using the unsupervised artificial neural networks (US-ANNs) for solving a class of two-point nonlinear singular boundary value problems (TPN-SBVPs) arising in the thermal explosion’s theory. The analysis using small and large neurons (3, 10 and 30 neurons) is presented along with the absolute error performances and complexity cost. An error function is optimized using the global and local search mechanisms called genetic algorithm (GA) and active-set approach (ASA) for solving the TPN-SBVPs. The correctness of the designed scheme US-ANNs using the hybrid combination of GA-ASA is approved through the comparison of obtained and true solutions. Moreover, statistical analysis will also be performed to authenticate the reliability and competency of the proposed method for solving the singular model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Keller JB (1956) Electrohydrodynamics I The equilibrium of a charged gas in a container. J Rational Mechanics Analys 5:715–724

    MathSciNet  MATH  Google Scholar 

  2. Chambré PL (1952) On the solution of the Poisson-Boltzmann equation with application to the theory of thermal explosions. J Chem Phys 20(11):1795–1797

    Article  Google Scholar 

  3. Parter SV (1965) Numerical methods for generalized axially symmetric potentials. J Soc Indus Appl Math 2(3):500–516

    Article  MathSciNet  MATH  Google Scholar 

  4. Thomas, L.H., 1927, The calculation of atomic fields. In Mathematical proceedings of the Cambridge philosophical society (Vol. 23, No. 5, pp. 542–548). Cambridge University Press.

  5. Fermi E (1927) A statistical method for the determination of some priorieta dell’atome. Rend Accad Nat Lincei 6(602–607):32

    Google Scholar 

  6. McElwain DLS (1978) A re-examination of oxygen diffusion in a spherical cell with Michaelis-Menten oxygen uptake kinetics. J Theor Biol 71(2):255–263

    Article  Google Scholar 

  7. Gray BF (1980) The distribution of heat sources in the human head—theoretical considerations. J Theor Biol 82(3):473–476

    Article  Google Scholar 

  8. Adam JA (1987) A mathematical model of tumor growth II Effects of geometry and spatial nonuniformity on stability. Mathematical Biosci 86(2):183–211

    Article  MATH  Google Scholar 

  9. Burton AC (1966) Rate of growth of solid tumours as a problem of diffusion. Growth 30(2):157–176

    Google Scholar 

  10. Greenspan HP (1972) Models for the growth of a solid tumor by diffusion. Stud Appl Math 51(4):317–340

    Article  MATH  Google Scholar 

  11. Nayfeh, A.H., Perturbation Methods, Wiley, New York, 1973. MR0404788 (53: 8588).

  12. He JH (2003) Homotopy perturbation method: a new nonlinear analytical technique. Appl Math Comput 135(1):73–79

    MathSciNet  MATH  Google Scholar 

  13. Odibat ΖΜ et al (2006) Application of variational iteration method to nonlinear differential equations of fractional order. Int J Nonlinear Sci Numerical Simulation 7(1):27–34

    Article  MathSciNet  MATH  Google Scholar 

  14. Adomian G (1994) Solving frontier problems of physics: the decomposition method. Fundamental Theories of Physics, Kluwer Academic Publishers Group, Dordrecht, With a preface by Yves Cherruault, p 1

    MATH  Google Scholar 

  15. Liao S (2009) Notes on the homotopy analysis method: some definitions and theorems. Commun Nonlinear Sci Numer Simul 14(4):983–997

    Article  MathSciNet  MATH  Google Scholar 

  16. Sabir Z et al (2021) Design of Morlet wavelet neural network for solving the higher order singular nonlinear differential equations. Alex Eng J 60(6):5935–5947

    Article  Google Scholar 

  17. Sabir Z et al (2020) Integrated intelligent computing with neuro-swarming solver for multi-singular fourth-order nonlinear Emden-Fowler equation. Comput Appl Math 39(4):1–18

    Article  MathSciNet  MATH  Google Scholar 

  18. Sabir Z et al (2020) Heuristic computing technique for numerical solutions of nonlinear fourth order Emden-Fowler equation. Math Comput Simul 178:534–548

    Article  MathSciNet  MATH  Google Scholar 

  19. Umar M et al (2020) A stochastic computational intelligent solver for numerical treatment of mosquito dispersal model in a heterogeneous environment. The European Physical Journal Plus 135(7):1–23

    Article  Google Scholar 

  20. Umar M et al (2021) Neuro-swarm intelligent computing paradigm for nonlinear HIV infection model with CD4+ T-cells. Math Comput Simul 188:241–253

    Article  MathSciNet  MATH  Google Scholar 

  21. Umar M et al (2020) Stochastic numerical technique for solving HIV infection model of CD4+ T cells. The European Physical Journal Plus 135(5):403

    Article  MathSciNet  Google Scholar 

  22. Guerrero-Sánchez Y et al (2020) Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems-S 14:3611

    Article  MathSciNet  MATH  Google Scholar 

  23. Umar M et al (2021) A novel study of Morlet neural networks to solve the nonlinear HIV infection system of latently infected cells. Results in Physics 25:1042

    Article  Google Scholar 

  24. Raja MAZ et al (2019) Numerical solution of doubly singular nonlinear systems using neural networks-based integrated intelligent computing. Neural Comput Appl 31(3):793–812

    Article  MathSciNet  Google Scholar 

  25. Sabir Z et al (2020) FMNEICS: fractional Meyer neuro-evolution-based intelligent computing solver for doubly singular multi-fractional order Lane-Emden system. Comput Appl Math 39(4):1–18

    Article  MathSciNet  MATH  Google Scholar 

  26. Umar M et al (2020) A stochastic numerical computing heuristic of SIR nonlinear model based on dengue fever. Results in Physics 19:103585

    Article  Google Scholar 

  27. Roul P et al (2017) A new numerical approach for solving a class of singular two-point boundary value problems. Numerical Algorithms 75(3):531–552

    Article  MathSciNet  MATH  Google Scholar 

  28. Pandey RK et al (2008) Existence-uniqueness results for a class of singular boundary value problems arising in physiology. Nonlinear Anal Real World Appl 9(1):40–52

    Article  MathSciNet  MATH  Google Scholar 

  29. Çağlar H et al (2009) B-spline solution of non-linear singular boundary value problems arising in physiology. Chaos, Solitons Fractals 39(3):1232–1237

    Article  MathSciNet  MATH  Google Scholar 

  30. Iyengar SRK et al (1986) Spline finite difference methods for singular two point boundary value problems. Numer Math 50(3):363–376

    Article  MathSciNet  MATH  Google Scholar 

  31. Kanth AR (2007) Cubic spline polynomial for non-linear singular two-point boundary value problems. Appl Math Comput 189(2):2017–2022

    MathSciNet  MATH  Google Scholar 

  32. Khuri SA et al (2010) A novel approach for the solution of a class of singular boundary value problems arising in physiology. Math Comput Model 52(3–4):626–636

    Article  MathSciNet  MATH  Google Scholar 

  33. Pandey RK et al (2004) On the convergence of a finite difference method for a class of singular boundary value problems arising in physiology. J Comput Appl Math 166(2):553–564

    Article  MathSciNet  MATH  Google Scholar 

  34. Kanth AR et al (2010) He’s variational iteration method for treating nonlinear singular boundary value problems. Comput Math Appl 60(3):821–829

    Article  MathSciNet  MATH  Google Scholar 

  35. Mitchell M et al (2014) Relative building-block fitness and the building block hypothesis. D. Whitley, Foundations of Genetic Algorithms 2:109–126

    Google Scholar 

  36. Hopper E et al (1999) A genetic algorithm for a 2D industrial packing problem. Comput Ind Eng 37(1–2):375–378

    Article  Google Scholar 

  37. Dandy GC et al (1996) An improved genetic algorithm for pipe network optimization. Water Resour Res 32(2):449–458

    Article  Google Scholar 

  38. Lee JC, Lin WM, Liao GC, Tsao TP (2011) Quantum genetic algorithm for dynamic economic dispatch with valve-point effects and including wind power system. Int J Electr Power Energy Syst 33(2):189–197

    Article  Google Scholar 

  39. Wen X et al (2006) An effective genetic algorithm for circularity error unified evaluation. Int J Mach Tools Manuf 46(14):1770–1777

    Article  Google Scholar 

  40. Sabir Z (2021) Stochastic numerical investigations for nonlinear three-species food chain system. Int J Biomathemat. https://doi.org/10.1142/S179352452250005X

    Article  MATH  Google Scholar 

  41. Arabali A et al (2013) Genetic-algorithm-based optimization approach for energy management. IEEE Trans Power Delivery 28(1):162–170

    Article  Google Scholar 

  42. Gai, K., Qiu, M. and Zhao, H., 2017. Cost-aware multimedia data allocation for heterogeneous memory using genetic algorithm in cloud computing. IEEE transactions on cloud computing.

  43. Erenturk S et al (2007) Comparison of genetic algorithm and neural network approaches for the drying process of carrot. J Food Eng 78(3):905–912

    Article  Google Scholar 

  44. Piller O et al (2020) A content-based active-set method for pressure-dependent models of water distribution systems with flow controls. J Water Resour Plan Manag 146(4):04020009

    Article  Google Scholar 

  45. Gao Y et al (2020) Primal-dual active set method for pricing American better-of option on two assets. Commun Nonlinear Sci Numerical Simulation 80:104

    Article  MathSciNet  Google Scholar 

  46. Azizi M et al (2020) A fuzzy system based active set algorithm for the numerical solution of the optimal control problem governed by partial differential equation. Eur J Control 54:99–110

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang C et al (2020) A smoothing active set method for linearly constrained non-Lipschitz Nonconvex optimization. SIAM J Optim 30(1):1–30

    Article  MathSciNet  MATH  Google Scholar 

  48. Nakayama S et al (2021) An active-set memoryless quasi-Newton method based on a spectral-scaling Broyden family for bound constrained optimization. Results in Control and Optimization 3:100012

    Article  Google Scholar 

  49. Hager, W.W. et al., 2020. A Newton-Type Active Set Method for Nonlinear Optimization with Polyhedral Constraints. arXiv preprint

  50. Mhlanga A (2018) A theoretical model for the transmission dynamics of HIV/HSV-2 co-infection in the presence of poor HSV-2 treatment adherence. Appl Mathemat Nonlinear Sci 3(2):603–626

    Article  MathSciNet  Google Scholar 

  51. Baskonus HM et al (2019) New complex hyperbolic structures to the lonngren-wave equation by using sine-gordon expansion method. Appl Mathemat Nonlinear Sci 4(1):141–150

    MathSciNet  Google Scholar 

  52. Ilhan E et al (2020) A generalization of truncated M-fractional derivative and applications to fractional differential equations. Appl Mathemat Nonlinear Sci 5(1):171–188

    Article  MathSciNet  Google Scholar 

  53. Sajid T et al (2020) Impact of oxytactic microorganisms and variable species diffusivity on blood-gold Reiner-Philippoff nanofluid. Appl Nanosci 11:321–333

    Article  Google Scholar 

  54. Vajravelu K et al (2017) Influence of velocity slip and temperature jump conditions on the peristaltic flow of a Jeffrey fluid in contact with a Newtonian fluid. Appl Mathemat Nonlinear Sci 2(2):429–442

    Article  MathSciNet  MATH  Google Scholar 

  55. Sajid, T. et al., 2020. Impact of activation energy and temperature-dependent heat source/sink on maxwell–sutterby fluid. Mathematical Problems in Engineering, 2020.

  56. Selvi MSM et al (2019) Application of modified wavelet and homotopy perturbation methods to nonlinear oscillation problems. Appl Mathemat Nonlinear Sci 4(2):351–364

    Article  MathSciNet  Google Scholar 

  57. Umar M et al (2020) The 3-D flow of Casson nanofluid over a stretched sheet with chemical reactions, velocity slip, thermal radiation and Brownian motion. Therm Sci 24(5):2929–2939

    Article  MathSciNet  Google Scholar 

  58. Ammar MK et al (2018) Visibility intervals between two artificial satellites under the action of Earth oblateness. Appl Mathemat Nonlinear Sci 3(2):353–374

    Article  MathSciNet  Google Scholar 

  59. Ammar MK et al (2018) Calculation of line of site periods between two artificial satellites under the action air drag. Appl Mathemat Nonlinear Sci 3(2):339–352

    Article  MathSciNet  Google Scholar 

  60. Duru H et al (2020) New travelling wave solutions for KdV6 equation using sub equation method. Appl Mathemat Nonlinear Sci 5(1):455–460

    Article  MathSciNet  Google Scholar 

  61. Sulaiman TA et al (2021) On the exact solutions to some system of complex nonlinear models. Appl Mathemat Nonlinear Sci 6(1):29–42

    Article  MathSciNet  Google Scholar 

  62. Zhao W, Sh T, Wang L (2020) Fault diagnosis and prognosis of bearing based on hidden Markov model with multi-features. Appl Mathemat Nonlinear Sci 5(1):71–84

    Article  MathSciNet  Google Scholar 

  63. Ayub A, Shah SZH, Sabir Z, Rao NS, Sadat R, Ali MR (2022) Spectral relaxation approach and velocity slip stagnation point flow of inclined magnetized cross-nanofluid with a quadratic multiple regression model. Waves Random Complex Media 1–25

  64. Botmart T, Sabir Z, Raja MAZ, Weera W, Sadat R, Ali MR (2022) A numerical study of the fractional order dynamical nonlinear susceptible infected and quarantine differential model using the stochastic numerical approach. Fractal Fract 6(3):139

    Article  Google Scholar 

  65. Sabir Z, Baleanu D, Ali MR, Sadat R (2022) A novel computing stochastic algorithm to solve the nonlinear singular periodic boundary value problems. Int J Comput Math 1–14

  66. Sabir Z, Raja MAZ, Nguyen TG, Fathurrochman I, Sadat R, Ali MR (2022) Applications of neural networks for the novel designed of nonlinear fractional seventh order singular system. Eur Phys J Spec Top 1–15

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed R. Ali.

Ethics declarations

Conflict of interest

The authors hereby state that there are no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabir, Z., Wahab, H.A., Ali, M.R. et al. Neuron Analysis of the Two-Point Singular Boundary Value Problems Arising in the Thermal Explosion’s Theory. Neural Process Lett 54, 4297–4324 (2022). https://doi.org/10.1007/s11063-022-10809-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-022-10809-6

Keywords

Navigation