Skip to main content
Log in

Preassigned-Time Synchronization of Delayed Fuzzy Cellular Neural Networks with Discontinuous Activations

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, the problem of the preassigned-time synchronization is studied for a class of delayed fuzzy cellular neural networks with discontinuous activations via preassigned-time control. Above all, with the help of the existing classical fixed-time stability theory and via variable substitutions, a new fixed-time stability result is established, and the derived estimation of settling times are tighter than the existing ones. Subsequently, as applications of the new fixed-time stability results, a novel preassigned-time stability theorem is derived, and some novel and useful sufficient criteria are obtained to guarantee that the addressed neural networks achieve preassigned-time synchronization. The preassigned synchronization time is not only independent of the initial value, system and controller parameters, but also can be preassigned in advance based on the actual needs. Additionally, to suppress or eliminate the chattering phenomenon, a saturation function is designed to replace the sign function in the controller, and its effectiveness has been verified by numerical simulation. Especially, one of the power exponents of the two differently designed preassigned-time controllers can change smartly instead of being a fixed constant. Lastly, two numerical examples with simulations are given to present the effectiveness of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availibility

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Cao X, Shi P, Li Z et al (2018) Neural network based adaptive backstepping control with application to spacecraft attitude regulation[J]. IEEE Trans Neural Netw Learn Syst 29(9):4303–4313

    Article  Google Scholar 

  2. Hu X, Feng G, Duan S et al (2017) A memristive multilayer cellular neural network with applications to image processing[J]. IEEE Trans Neural Netw Learn Syst 28(8):1889–1901

    Article  MathSciNet  Google Scholar 

  3. Chen D, Cao X, Li S (2021) A multi-constrained zeroing neural network for time-dependent nonlinear optimization with application to mobile robot tracking control[J]. Neurocomputing 460:331–344

    Article  Google Scholar 

  4. Duzenli G (2015) A new security approach for public transport application against tag cloning with neural network-based pattern recognition[J]. Neural Comput Appl 26(7):1681–1691

    Article  Google Scholar 

  5. Lu H, Jin L, Luo X et al (2019) RNN for solving perturbed time-varying underdetermined linear system with double bound limits on residual errors and state variables[J]. IEEE Trans Ind Inform 15(11):5931–5942

    Article  Google Scholar 

  6. Li S, He J, Li Y et al (2017) Distributed recurrent neural networks for cooperative control of manipulators: a game-theoretic perspective[J]. IEEE Trans Neural Netw Learn Syst 28(2):415–426

    Article  MathSciNet  Google Scholar 

  7. Ke Y, Miao C (2013) Stability analysis of inertial Cohen-Grossberg-type neural networks with time delays[J]. Neurocomputing 117:196–205

    Article  Google Scholar 

  8. Liu H, Wang Z, Shen B et al (2018) Stability analysis for discrete-time stochastic memristive neural networks with both leakage and probabilistic delay[J]. Neural Netw 102:1–9

    Article  MATH  Google Scholar 

  9. Song Q, Wang Z (2009) Dynamical behaviors of fuzzy reaction-diffusion periodic cellular neural networks with variable coefficients and delays[J]. Appl Math Modell 33(9):3533–3545

    Article  MathSciNet  MATH  Google Scholar 

  10. Ali MS, Narayanan G, Shekher V et al (2020) Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms[J]. Appl Math Comput 369:124896

    MathSciNet  MATH  Google Scholar 

  11. Liu Y, Song Z, Tan M (2019) Multiple stability and multiperiodicity of delayed memristor-based fuzzy cellular neural networks with nonmonotonic activation functions[J]. Math Comput Simul 159(C):1–17

    Article  MathSciNet  MATH  Google Scholar 

  12. Gan Q, Li L, Yang J et al (2021) Improved results on fixed-/preassigned-time synchronization for memristive complex-valued neural networks[J]. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2021.3070966

    Article  Google Scholar 

  13. Wang X, She K, Zhong S (2017) Exponential synchronization of memristor-based neural networks with time-varying delay and stochastic perturbation[J]. Neurocomputing 242:131–139

    Article  Google Scholar 

  14. Yu J, Hu C, Jiang H et al (2012) Exponential lag synchronization for delayed fuzzy cellular neural networks via periodically intermittent control[J]. Math Comput Simul 82(5):895–908

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang T, Yang L, Wu CW et al. (1996) Fuzzy cellular neural networks: theory. In: proceedings of the 1996 4th IEEE International workshop on cellular neural networks, and their applications, CNNA-96, 181-186

  16. Wang J, Lu JG (2008) Global exponential stability of fuzzy cellular neural networks with delays and reaction-diffusion terms[J]. Chaos Solitons Fractals 38(3):878–885

    Article  MathSciNet  MATH  Google Scholar 

  17. Shanmugam L, Mani P, Rajan R et al (2020) Adaptive synchronization of reaction-diffusion neural networks and its application to secure communication[J]. IEEE Trans Cybernet 50(3):911–922

    Article  Google Scholar 

  18. Wen S, Zeng Z, Huang T et al (2015) Lag synchronization of switched neural networks via neural activation function and applications in image encryption[J]. IEEE Trans Neural Netw Learn Syst 26(7):1493–1502

    Article  MathSciNet  Google Scholar 

  19. Gan Q, Xu R, Yang P (2012) Exponential synchronization of stochastic fuzzy cellular neural networks with time delay in the leakage term and reaction-diffusion[J]. Commun Nonlinear Sci Numer Simul 17:1862–1870

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao J, Zhua P, Xiong W et al (2016) Asymptotic synchronization for stochastic memristor-based neural networks with noise disturbance[J]. J Franklin Inst 353(13):3271–3289

    Article  MathSciNet  MATH  Google Scholar 

  21. Tang R, Yang X, Wan X (2019) Finite-time cluster synchronization for a class of fuzzy cellular neural networks via non-chattering quantized controllers[J]. Neural Netw 113:79–90

    Article  MATH  Google Scholar 

  22. Zheng M, Li L, Peng H et al (2018) Fixed-time synchronization of memristor-based fuzzy cellular neural network with time-varying delay[J]. J Franklin Inst 355:6780–6809

    Article  MathSciNet  MATH  Google Scholar 

  23. Li N, Zheng WX (2020) Bipartite synchronization for inertia memristor-based neural networks on coopetition networks[J]. Neural Netw 124:39–49

    Article  MATH  Google Scholar 

  24. He H, Liu X, Cao J et al (2021) Finite/fixed-time synchronization of delayed inertial memristive neural networks with discontinuous activations and disturbances[J]. Neural Process Lett 53(5):3525–3544

    Article  Google Scholar 

  25. Polyakov A (2012) Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans Autom Control 57:2106–2110

    Article  MathSciNet  MATH  Google Scholar 

  26. Hu C, Jiang H (2021) Special functions-based fixed-time estimation and stabilization for dynamic systems[J]. IEEE Trans Syst Man Cybernet Syst. https://doi.org/10.1109/TSMC.2021.3062206

    Article  Google Scholar 

  27. Hu C, Yu J, Chen Z et al (2017) Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks[J]. Neural Netw 89:74–83

    Article  MATH  Google Scholar 

  28. Aldana-Lopez R, Gomez-Gutierrez D, Jimenez-Rodriguez E et al (2019) Enhancing the settling time estimation of a class of fixed-time stable systems[J]. Int J Robust Nonlinear Control 29(12):4135–4148

    Article  MathSciNet  MATH  Google Scholar 

  29. Li N, Wu X, Feng J et al (2020) Fixed-time synchronization of complex dynamical networks: a novel and economical mechanism[J]. IEEE Trans Cybernet 19:1–11

    Google Scholar 

  30. Cui W, Wang Z, Jin W (2021) Fixed-time synchronization of Markovian jump fuzzy cellular neural networks with stochastic disturbance and time-varying delays[J]. Fuzzy Sets Syst 411:68–84

    Article  MathSciNet  MATH  Google Scholar 

  31. Kong F, Zhu Q, Sakthivel R et al (2021) Fixed-time synchronization analysis for discontinuous fuzzy inertial neural networks with parameter uncertainties[J]. Neurocomputing 422:295–313

    Article  Google Scholar 

  32. Duan L, Shi M, Huang L (2021) New results on finite-/fixed-time synchronization of delayed diffusive fuzzy HNNs with discontinuous activations[J]. Fuzzy Sets Syst 416:141–151

    Article  MathSciNet  MATH  Google Scholar 

  33. Liang C, Ge M, Liu Z et al (2021) Predefined-time formation tracking control of networked marine surface vehicles[J]. Control Eng Pract 107:104682

    Article  Google Scholar 

  34. Wang F, Miao Y, Li C et al (2020) Attitude control of rigid spacecraft with predefined-time stability[J]. J Franklin Inst 357:4212–4221

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang Y, Wang Z, Chen M et al (2021) Predefined-time sliding mode formation control for multiple autonomous underwater vehicles with uncertainties[J]. Chaos Solitons Fractals 144:110680

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen C, Mi L, Liu Z et al (2021) Predefined-time synchronization of competitive neural networks[J]. Neural Netw 142:492–499

    Article  Google Scholar 

  37. Hu C, He H, Jiang H (2021) Fixed/preassigned-time synchronization of complex networks via improving fixed-time stability[J]. IEEE Trans Cybernet 51(6):2882–2892

    Article  Google Scholar 

  38. Lin L, Wu P, Chen Y et al (2020) Enhancing the settling time estimation of fixed-time stability and applying it to the predefined-time synchronization of delayed memristive neural networks with external unknown disturbance[J]. Chaos 30(8):083110

    Article  MathSciNet  MATH  Google Scholar 

  39. Bao Y, Zhang Y, Zhang B et al (2021) Prescribed-time synchronization of coupled memristive neural networks with heterogeneous impulsive effect[J]. Neural Process Lett 53(2):1615–1632

    Article  Google Scholar 

  40. Liu L, Ding X, Zhou W (2021) Prescribed-time cluster synchronization of uncertain complex dynamical networks with switching via pinning control[J]. Neurocomputing 419:136–147

    Article  Google Scholar 

  41. Xiao L, Cao Y, Dai J et al (2021) Finite-time and predefined-time convergence design for zeroing neural network: theorem, method, and verification[J]. IEEE Trans Ind Inform 17(7):4724–4732

    Article  Google Scholar 

  42. Forti M, Nistri P (2003) Global convergence of neural networks with discontinuous neuron activations[J]. IEEE Trans Circ Syst I-Regular Papers 50(11):1421–1435

    Article  MathSciNet  MATH  Google Scholar 

  43. Effati S, Baymani M (2005) A new nonlinear neural network for solving convex nonlinear programming problems[J]. Appl Math Comput 168(2):1370–1379

    MathSciNet  MATH  Google Scholar 

  44. Arjmandzadeh Z, Safi M, Nazemi A (2017) A new neural network model for solving random interval linear programming problems[J]. Neural Netw 89:11–18

    Article  MATH  Google Scholar 

  45. Cai Z, Huang L, Zhang L (2015) New exponential synchronization criteria for time-varying delayed neural networks with discontinuous activations[J]. Neural Netw 65:105–114

    Article  MATH  Google Scholar 

  46. Xiao J, Zeng Z, Wen S et al (2021) Finite-/fixed-time synchronization of delayed coupled discontinuous neural networks with unified control schemes[J]. IEEE Trans Neural Netw Learn Syst 32(6):2535–2546

    Article  MathSciNet  Google Scholar 

  47. Wang L, Zeng Z, Hu J et al (2017) Controller design for global fixed-time synchronization of delayed neural networks with discontinuous activations[J]. Neural Netw 87:122–131

    Article  MATH  Google Scholar 

  48. Duan L, Wei H, Huang L (2019) Finite-time synchronization of delayed fuzzy cellular neural networks with discontinuous activation[J]. Fuzzy Sets Syst 361:56–70

    Article  MathSciNet  MATH  Google Scholar 

  49. Li S, Peng X, Tang Y et al (2018) Finite-time synchronization of time-delayed neural networks with unknown parameters via adaptive control[J]. Neurocomputing 308:65–74

    Article  Google Scholar 

  50. Zhang W, Li C, Huang T et al (2018) Fixed-time synchronization of complex networks with nonidentical nodes and stochastic noise perturbations[J]. Phys A 492:1531–1542

    Article  MathSciNet  MATH  Google Scholar 

  51. Deng H, Bao H (2019) Fixed-time synchronization of quaternion-valued neural networks[J]. Phys A 527:121351

    Article  MathSciNet  MATH  Google Scholar 

  52. Abdurahman A, Jiang H, Teng Z (2016) Finite-time synchronization for fuzzy cellular neural networks with time-varying delays[J]. Fuzzy Sets Syst 297:96–111

    Article  MathSciNet  MATH  Google Scholar 

  53. Wan P, Sun D, Zhao M (2020) Finite-time and fixed-time anti-synchronization of Markovian neural networks with stochastic disturbances via switching control[J]. Neural Netw 123:1–11

    Article  MATH  Google Scholar 

  54. Huang Y, Qiu S, Ren S et al (2018) Fixed-time synchronization of coupled Cohen-Grossberg neural networks with and without parameter uncertainties[J]. Neurocomput 315:157–168

    Article  Google Scholar 

  55. Gong S, Guo Z, Wen S et al (2021) Finite-time and fixed-time synchronization of coupled memristive neural networks with time delay[J]. IEEE Trans Cybernet 51(6):2944–2955

    Article  Google Scholar 

  56. Huang Y, Zhang H, Wang Z (2014) Multistability of complex-valued recurrent neural networks with real-imaginary-type activation functions[J]. Appl Math Comput 229:187–200

    Article  MathSciNet  MATH  Google Scholar 

  57. Amin MF, Murase K (2009) Single-layered complex-valued neural network for real-valued classification problems[J]. Neurocomputing 72:945–955

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of People’s Republic of China (Grant No. 12061055, Grant No. 12101454), Ningxia Natural Science Foundation (Grant No. 2020AAC03131), and Zunyi Normal college 2017 academic new talent cultivation and innovation exploration project(Qiankehe platform talent [2017] Grant No. 5727-24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengjun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, H., Li, F. Preassigned-Time Synchronization of Delayed Fuzzy Cellular Neural Networks with Discontinuous Activations. Neural Process Lett 54, 4265–4296 (2022). https://doi.org/10.1007/s11063-022-10808-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-022-10808-7

Keywords

Navigation