Skip to main content
Log in

Spatiotemporal Behavior of Small-World Neuronal Networks Using a Map-Based Model

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, the dynamics of a map-based model is proposed firstly. It is a simple model which can not only reproduce rich behaviors of biological neurons but also compute efficiently. Then, the dynamics of two coupled maps that model the behavior of two electrically coupled neurons is discussed. By tuning the coupling strength, synchronization of two spiking or bursting neurons are simulated. Furthermore, the spatiotemporal behavior of a small-world neuronal network using map-based model is studied. Detailed investigations reveal that the collective dynamics of neuronal activity will be affected by varying some key parameters, such as the coupling strength of neurons, connection probability and the number of nearest neighbor in small-world topology. Our study suggests that the map-based model will give us a new opportunity to reproduce the real biological network containing a large number of neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rulkov NF (2002) Modeling of spiking-bursting neural behavior using two-dimensional map. Phys Rev E 65:041922

    Article  MathSciNet  MATH  Google Scholar 

  2. Izhikevich EM (2004a) Spike-timing dynamics of neuronal groups. Cereb Cortex 14(8):933–944

    Article  MathSciNet  Google Scholar 

  3. Hodgkin AL, Huxley AF (1952) A qualitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  Google Scholar 

  4. Knight BW (1972) Dynamics of encoding in a population of neurons. J Gen Physiol 59:734C766

    Google Scholar 

  5. Stein RB (1967) Some models of neuronal variability. Biophys J 7(1):37–68

    Article  Google Scholar 

  6. Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572

    Article  MathSciNet  Google Scholar 

  7. FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6):445–466

    Article  Google Scholar 

  8. Rose RM, Hindmarsh JL (1989) The assembly of ionic currents in a thalamic neuron. I. The three-dimensional model. Proc R Soc Lond B 237:267–288

    Article  Google Scholar 

  9. Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35:193–213

    Article  Google Scholar 

  10. Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2002) Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J Neurosci 22:8691–8704

    Google Scholar 

  11. Houweling AR, Bazhenov M, Timofeev I, Grenier F, Steriade M, Sejnowski TJ (2002) Frequency- selective augmenting responses by short-term synaptic depression in cat neocortex. J Physiol 542:599C617

    Article  Google Scholar 

  12. Destexhe A, Bal T, McCormick DA, Sejnowski TJ (1996) Ionic mechanisms underlying synchronized and propagating waves in a model of ferret thalamic slices. J Neurophysiol 76:2049C2070

    Google Scholar 

  13. Golomb D, Wang XJ, Rinzel J (1996) Propagation of spindle waves in a thalamic slice model. J Neurophysiol 75:750C769

    Google Scholar 

  14. Traub RD, Jefferys JG, Whittington MA (1997) Simulation of gamma rhythms in networks of interneu- rons and pyramidal cells. J Comput Neurosci 4:141–150

    Article  MATH  Google Scholar 

  15. Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel HD, Sejnowski TJ, Laurent G (2001) Model of transient oscillatory synchronization in the locust antennal lobe. Neuron 30:553C567

    Google Scholar 

  16. Rulkov NF, Timofeev I, Bazhenov M (2004) Oscillations in large-scale cortical networks: map-based model. J Comput Neurosci 17:203–223

    Article  Google Scholar 

  17. Sausedo JM, Pisarchik AN (2014) Synchronization of map-based neurons with memory and synaptic delay. Physi Lett A 378(30):2108–2112

    Article  Google Scholar 

  18. Rulkov NF, Bazhenov M (2008) Oscillations in large-scale cortical network models. J Biol Phys 34:279–299

    Article  Google Scholar 

  19. Cao HJ, Wu YG (2013) Bursting types and stable domains of Rulkov neuron network with mean field computing. Int J Bifurc Chaos 23(12):1330041–1330061

    Article  MATH  Google Scholar 

  20. Wang Q, Chen G, Perc M (2011) Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling. PLoS One 6(1):el5851

    Google Scholar 

  21. Heagy JF, Carroll TL, Pecora LM (1994) Synchronous chaos in coupled oscillator systems. Phys Rev E 50(3):1874–1885

    Article  Google Scholar 

  22. Qu JY, Wang RB, Du Y (2012) Synchronization study in ring-like and grid-like neuronal networks. Cogn Neurodyn 6(1):21–31

    Article  Google Scholar 

  23. Wu CW, Chua LO (1995) Synchronization in an array of linearly coupled dynamical systems. IEEE Trans Circuits Syst I 42(8):430–447

    Article  MathSciNet  MATH  Google Scholar 

  24. Gade PM (1996) Synchronization of oscillators with random nonlocal connectivity. Phys Rev E 54:64–70

    Article  Google Scholar 

  25. Manrubia SC, Mikhailov SM (1999) Synchronization and clustering in randomly coupled chaotic dynamical networks. Phys Rev E 60:1579–1589

    Article  Google Scholar 

  26. Qu JY, Wang RB, Yan CK, Du Y (2014) Oscillations and synchrony in a cortical neural network. Cogn Neurodyn 8(2):157–166

    Article  Google Scholar 

  27. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small world’ networks. Nature 393:440–442

    Article  Google Scholar 

  28. Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12(6):512–523

    Article  Google Scholar 

  29. Sun WG, Wang RB, Wang WX, Cao JT (2010) Analyzing inner and outer synchronization between two coupled discrete-time networks with time delays. Cogn Neurodyn 4(3):225C231

    Article  Google Scholar 

  30. Volman V, Baruchi I, Ben-Jacob E (2005) Manifestation of function-follow-form in cultured neuronal networks. Phys Biol 2(2):98–110

    Article  Google Scholar 

  31. Yu S, Huang DB, Singer W et al (2008) A small world of neuronal synchrony. Cereb Cortex 18(2):2891–2901

    Article  Google Scholar 

  32. Roxin A, Riecke H, Solla SA (2004) Self-sustained activity in a small-world network of excitable neurons. Phys Rev Lett 92:198101

    Article  Google Scholar 

  33. Kwon O, Moon HT (2002) Coherence resonance in small-world networks of excitable cell. Phys Lett A 298:319–324

    Article  MATH  Google Scholar 

  34. Gong YB, Xu B, Xu Q, Yang CL, Ren TQ, Hou ZH, Xin HW (2006) Ordering spatiotemporal chaos in complex thermosensitive neuron networks. Phys Rev E 73:046137

    Article  Google Scholar 

  35. Wei DQ, Luo XS (2007) Ordering spatiotemporal chaos in discrete neural networks with small-world connections. Europhys Lett 78:68004

    Article  Google Scholar 

  36. Wang M, Hou Z, Xin H (2006) Ordering spatiotemporal chaos in small-world neuron networks. Chem Phys Chem 7:579–582

    Google Scholar 

  37. Perc M (2007) Stochastic resonance on excitable small-world networks via a pacemaker. Phys Rev E 76:066203

    Article  Google Scholar 

  38. Perc M, Gosak M (2008) Pacemaker-driven stochastic resonance on diffusive and complex networks of bistable oscillators. New J Phys 10:053008

    Article  Google Scholar 

  39. Hasegawa H (2005) Synchronizations in small-world networks of spiking neurons: diffusive versus sigmoid couplings. Phys Rev E 72:056139

    Article  MathSciNet  Google Scholar 

  40. Protopapas AD, Vanier M, Bower JM (1998) Simulating of lagre networks of neurons. In: Koch Ch, Segev I (eds) Methods in neuronal modeling: from ions to networks. MIT, Cambridge, p 461

    Google Scholar 

Download references

Acknowledgments

The work is supported by National Natural Science Foundation of China (11402294,11232005) and Zhejiang Provincial Natural Science Foundation (Q14A020013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyi Qu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, J., Wang, R., Yan, C. et al. Spatiotemporal Behavior of Small-World Neuronal Networks Using a Map-Based Model. Neural Process Lett 45, 689–701 (2017). https://doi.org/10.1007/s11063-016-9547-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-016-9547-5

Keywords

Navigation