Skip to main content
Log in

IDH1 mutation-associated long non-coding RNA expression profile changes in glioma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Isocitrate dehydrogenase 1 (IDH1) mutation is an important prognostic marker in glioma. However, its downstream effect remains incompletely understood. Long non-coding RNAs (lncRNAs) are emerging as important regulators of tumorigenesis in a number of human malignancies, including glioma. Here, we investigated whether and how lncRNA expression profiles would differ between gliomas with or without IDH1 mutation. By using our previously reported lncRNA mining approach, we performed lncRNA profiling in three public glioma microarray datasets. The differential lncRNA expression analysis was then conducted between mutant-type and wild-type IDH1 glioma samples. Comparison analysis identified 14 and 9 lncRNA probe sets that showed significantly altered expressions in astrocytic and oligodendroglial tumors, respectively (fold change ≥ 1.5, false discovery rate ≤ 0.1). Moreover, the differential expressions of these lncRNAs could be confirmed in the independent testing sets. Functional exploration of the lncRNAs by analyzing the lncRNA—protein interactions revealed that these IDH1 mutation-associated lncRNAs were involved in multiple tumor-associated cellular processes, including metabolism, cell growth and apoptosis. Our data suggest the potential roles of lncRNA in gliomagenesis, and may help to understand the pathogenesis of gliomas associated with IDH1 mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng ZP, Snyder M, Dermitzakis ET, Stamatoyannopoulos JA et al (2007) Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature 447(7146):799–816

    Article  CAS  PubMed  Google Scholar 

  2. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159

    Article  CAS  PubMed  Google Scholar 

  4. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  5. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21(6):354–361

    Article  CAS  PubMed  Google Scholar 

  6. Wang P, Ren Z, Sun P (2012) Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem 113(6):1868–1874

    Article  CAS  PubMed  Google Scholar 

  7. Shi Y, Wang Y, Luan W, Wang P, Tao T, Zhang J, Qian J, Liu N, You Y (2014) Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. PLoS ONE 9(1):e86295

    Article  PubMed Central  PubMed  Google Scholar 

  8. Prensner JR, Chinnaiyan AM (2011) The emergence of lncRNAs in cancer biology. Cancer Discov 1(5):391–407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Li R, Qian J, Wang YY, Zhang JX, You YP (2014) Long noncoding RNA profiles reveal three molecular subtypes in glioma. CNS Neurosci Ther 20(4):339–343

    Article  CAS  PubMed  Google Scholar 

  10. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116(6):597–602

    Article  CAS  PubMed  Google Scholar 

  12. Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A, Felsberg J, Wolter M, Mawrin C, Wick W et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1010 diffuse gliomas. Acta Neuropathol 118(4):469–474

    Article  PubMed  Google Scholar 

  13. Sanson M, Marie Y, Paris S, Idbaih A, Laffaire J, Ducray F, El Hallani S, Boisselier B, Mokhtari K, Hoang-Xuan K et al (2009) Isocitrate Dehydrogenase 1 Codon 132 Mutation Is an Important Prognostic Biomarker in Gliomas. J Clin Oncol 27(25):4150–4154

    Article  CAS  PubMed  Google Scholar 

  14. Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 Mutations Are Early Events in the Development of Astrocytomas and Oligodendrogliomas. Am J Pathol 174(4):1149–1153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ et al (2009) IDH1 and IDH2 mutations in gliomas. The N Engl J Med 360(8):765–773

    Article  CAS  PubMed  Google Scholar 

  16. Ichimura K, Pearson DM, Kocialkowski S, Backlund LM, Chan R, Jones DT, Collins VP (2009) IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol 11(4):341–347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Polivka J, Polivka J, Rohan V, Pesta M, Repik T, Pitule P, Topolcan O (2014) Isocitrate Dehydrogenase-1 mutations as prognostic biomarker in glioblastoma multiforme patients in West Bohemia. Biomed Res Int. doi:10.1155/2014/735659

    PubMed Central  PubMed  Google Scholar 

  18. Nobusawa S, Watanabe T, Kleihues P, Ohgaki H (2009) IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res 15(19):6002–6007

    Article  CAS  PubMed  Google Scholar 

  19. Reitman ZJ, Jin G, Karoly ED, Spasojevic I, Yang J, Kinzler KW, He Y, Bigner DD, Vogelstein B, Yan H (2011) Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci USA 108(8):3270–3275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Wang Z, Bao Z, Yan W, You G, Wang Y, Li X, Zhang W (2013) Isocitrate dehydrogenase 1 (IDH1) mutation-specific microRNA signature predicts favorable prognosis in glioblastoma patients with IDH1 wild type. J Exp Clin Cancer Res 32:59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, Campos C, Fabius AWM, Lu C, Ward PS et al (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483(7390):479–483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zhang X, Sun S, Pu JK, Tsang AC, Lee D, Man VO, Lui WM, Wong ST, Leung GK (2012) Long non-coding RNA expression profiles predict clinical phenotypes in glioma. Neurobiol disease 48(1):1–8

    Article  Google Scholar 

  23. Gravendeel LAM, Kouwenhoven MCM, Gevaert O, de Rooi JJ, Stubbs AP, Duijm JE, Daemen A, Bleeker FE, Bralten LBC, Kloosterhof NK et al (2009) Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res 69(23):9065–9072

    Article  CAS  PubMed  Google Scholar 

  24. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C, Pfaff E, Tonjes M, Sill M, Bender S et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437

    Article  CAS  PubMed  Google Scholar 

  25. Erdem-Eraslan L, Gravendeel LA, de Rooi J, Eilers PH, Idbaih A, Spliet WG, den Dunnen WF, Teepen JL, Wesseling P, Sillevis Smitt PA et al (2013) Intrinsic molecular subtypes of glioma are prognostic and predict benefit from adjuvant procarbazine, lomustine, and vincristine chemotherapy in combination with other prognostic factors in anaplastic oligodendroglial brain tumors: a report from EORTC study 26951. J Clin Oncol 31(3):328–336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365(9458):488–492

    Article  CAS  PubMed  Google Scholar 

  27. Zhang XQ, Sun S, Lam KF, Kiang KM, Pu JK, Ho AS, Lui WM, Fung CF, Wong TS, Leung GK (2013) A long non-coding RNA signature in glioblastoma multiforme predicts survival. Neurobiol Dis 58:123–131

    Article  CAS  PubMed  Google Scholar 

  28. Li JH, Liu S, Zhou H, Qu LH, Yang JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucl Acids Res 42:D92–D97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Bellucci M, Agostini F, Masin M, Tartaglia GG (2011) Predicting protein associations with long noncoding RNAs. Nat Methods 8(6):444–445

    Article  CAS  PubMed  Google Scholar 

  30. Bieler A, Mantwill K, Dravits T, Bernshausen A, Glockzin G, Kohler-Vargas N, Lage H, Gansbacher B, Holm PS (2006) Novel three-pronged strategy to enhance cancer cell killing in glioblastoma cell lines: histone deacetylase inhibitor, chemotherapy, and oncolytic adenovirus dl520. Hum Gene Ther 17(1):55–70

    Article  CAS  PubMed  Google Scholar 

  31. Faury D, Nantel A, Dunn SE, Guiot MC, Haque T, Hauser P, Garami M, Bognar L, Hanzely Z, Liberski PP et al (2007) Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors. J Clin Oncol 25(10):1196–1208

    Article  CAS  PubMed  Google Scholar 

  32. Rapp TB, Yang L, Conrad EU, Mandahl N, Chansky HA (2002) RNA splicing mediated by YB-1 is inhibited by TLS/CHOP in human myxoid liposarcoma cells. J Orthop Res 20(4):723–729

    Article  CAS  PubMed  Google Scholar 

  33. Jurchott K, Kuban RJ, Krech T, Bluthgen N, Stein U, Walther W, Friese C, Kielbasa SM, Ungethum U, Lund P et al (2010) Identification of Y-Box binding protein 1 as a core regulator of MEK/ERK pathway-dependent gene signatures in colorectal cancer cells. PLoS Genet 6(12):e1001231

    Article  PubMed Central  PubMed  Google Scholar 

  34. Ishii H, Saitoh M, Sakamoto K, Kondo T, Katoh R, Tanaka S, Motizuki M, Masuyama K, Miyazawa K (2014) Epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) suppress cancer cell motility via different mechanisms. J Biol Chem 289(40):27386–27399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Brooke GN, Culley RL, Dart DA, Mann DJ, Gaughan L, McCracken SR, Robson CN, Spencer-Dene B, Gamble SC, Powell SM et al (2011) FUS/TLS is a novel mediator of androgen-dependent cell-cycle progression and prostate cancer growth. Cancer Res 71(3):914–924

    Article  CAS  PubMed  Google Scholar 

  36. Haile S, Lal A, Myung JK, Sadar MD (2011) FUS/TLS is a co-activator of androgen receptor in prostate cancer cells. PLoS One 6(9):e24197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Haselbeck RJ, McAlister-Henn L (1993) Function and expression of yeast mitochondrial NAD- and NADP-specific isocitrate dehydrogenases. J Biol Chem 268(16):12116–12122

    CAS  PubMed  Google Scholar 

  38. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC et al (2010) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465(7300):966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C, Campos C, Tsoi J, Clark O, Oldrini B, Komisopoulou E et al (2013) An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340(6132):626–630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y, Hung G, Revenko A, Arun G, Stentrup M, Gross M et al (2013) The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 73(3):1180–1189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–U1148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Wang PJ, Ren ZQ, Sun PY (2012) Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem 113(6):1868–1874

    Article  CAS  PubMed  Google Scholar 

  43. Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10:38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Michelhaugh SK, Lipovich L, Blythe J, Jia H, Kapatos G, Bannon MJ (2011) Mining Affymetrix microarray data for long non-coding RNAs: altered expression in the nucleus accumbens of heroin abusers. J Neurochem 116(3):459–466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Johnson R (2012) Long non-coding RNAs in Huntington’s disease neurodegeneration. Neurobiol Dis 46(2):245–254

    Article  CAS  PubMed  Google Scholar 

  46. Hu Y, Chen HY, Yu CY, Xu J, Wang JL, Qian J, Zhang X, Fang JY (2014) A long non-coding RNA signature to improve prognosis prediction of colorectal cancer. Oncotarget 5(8):2230–2242

    Article  PubMed Central  PubMed  Google Scholar 

  47. Meng J, Li P, Zhang Q, Yang Z, Fu S (2014) A four-long non-coding RNA signature in predicting breast cancer survival. J Exp Clin Cancer Res 33(1):84

    Article  PubMed Central  PubMed  Google Scholar 

  48. Pang JCS, Li KKW, Lau KM, Ng YL, Wong J, Chung NYF, Li HM, Chui YL, Lui VWY, Chen ZP et al (2010) KIAA0495/PDAM Is Frequently Downregulated in Oligodendroglial Tumors and Its Knockdown by siRNA Induces Cisplatin Resistance in Glioma Cells. Brain Pathol 20(6):1021–1032

    Article  CAS  PubMed  Google Scholar 

  49. Zhang X, Weissman SM, Newburger PE (2014) Long intergenic non-coding RNA HOTAIRM1 regulates cell cycle progression during myeloid maturation in NB4 human promyelocytic leukemia cells. RNA Biol 11(6):777–787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Zhou Y, Zhang X, Klibanski A (2012) MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol 48(3):R45–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Zhang X, Rice K, Wang YY, Chen WD, Zhong Y, Nakayama Y, Zhou YL, Klibanski A (2010) Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology 151(3):939–947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, Ansell PJ, Zhao J, Weng C, Klibanski A (2007) Activation of p53 by MEG3 non-coding RNA. J Biol Chem 282(34):24731–24742

    Article  CAS  PubMed  Google Scholar 

  53. Zhang X, Zhou YL, Mehta KR, Danila DC, Scolavino S, Johnson SR, Klibanski A (2003) A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocr Metab 88(11):5119–5126

    Article  CAS  PubMed  Google Scholar 

  54. Zhang XQ, Leung GK (2014) Long non-coding RNAs in glioma: Functional roles and clinical perspectives. Neurochem Int 77:78–85

    Article  PubMed  Google Scholar 

  55. McCarthy N (2012) Metabolism: unmasking an oncometabolite. Nat Rev Cancer 12(4):229

    Article  CAS  PubMed  Google Scholar 

  56. Reitman ZJ, Yan H (2010) Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst 102(13):932–941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Kung JTY, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193(3):651–669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23(13):1494–1504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154(1):26–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Wu L, Murat P, Matak-Vinkovic D, Murrell A, Balasubramanian S (2013) Binding Interactions between Long Noncoding RNA HOTAIR and PRC2 Proteins. Biochemistry 52(52):9519–9527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Kornienko AE, Guenzl PM, Barlow DP, Pauler FM (2013) Gene regulation by the act of long non-coding RNA transcription. BMC Biol 11:59

    Article  PubMed Central  PubMed  Google Scholar 

  63. Lu QS, Ren SJ, Lu M, Zhang Y, Zhu DH, Zhang XG, Li TT (2013) Computational prediction of associations between long non-coding RNAs and proteins. BMC Genomics 14:651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Zhu JJ, Fu HJ, Wu YG, Zheng XF (2013) Function of lncRNAs and approaches to lncRNA-protein interactions. Sci China-Life Sci 56(10):876–885

    Article  CAS  PubMed  Google Scholar 

  65. Bell JL, Wachter K, Muhleck B, Pazaitis N, Kohn M, Lederer M, Huttelmaier S (2013) Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol Life Sci 70(15):2657–2675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Lederer M, Bley N, Schleifer C, Huttelmaier S (2014) The role of the oncofetal IGF2 mRNA-binding protein 3 (IGF2BP3) in cancer. Semin Cancer Biol 29:3–12

    Article  CAS  PubMed  Google Scholar 

  67. Cho S, Kim JH, Back SH, Jang SK (2005) Polypyrimidine tract-binding protein enhances the internal ribosomal entry site-dependent translation of p27Kip1 mRNA and modulates transition from G1 to S phase. Mol Cell Biol 25(4):1283–1297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Shibayama M, Ohno S, Osaka T, Sakamoto R, Tokunaga A, Nakatake Y, Sato M, Yoshida N (2009) Polypyrimidine tract-binding protein is essential for early mouse development and embryonic stem cell proliferation. FEBS J 276(22):6658–6668

    Article  CAS  PubMed  Google Scholar 

  69. He X, Arslan AD, Ho TT, Yuan C, Stampfer MR, Beck WT (2014) Involvement of polypyrimidine tract-binding protein (PTBP1) in maintaining breast cancer cell growth and malignant properties. Oncogenesis 3:e84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. He X, Pool M, Darcy KM, Lim SB, Auersperg N, Coon JS, Beck WT (2007) Knockdown of polypyrimidine tract-binding protein suppresses ovarian tumor cell growth and invasiveness in vitro. Oncogene 26(34):4961–4968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Jalali S, Bhartiya D, Lalwani MK, Sivasubbu S, Scaria V (2013) Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PLoS ONE 8(2):e53823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147(2):358–369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Guo L, Zhao Y, Yang S, Zhang H, Chen F (2014) An integrated analysis of miRNA, lncRNA, and mRNA expression profiles. Biomed Res Int 2014:345605

    PubMed Central  PubMed  Google Scholar 

  74. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Stella Sun for her suggestions in data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto Ka-Kit Leung.

Ethics declarations

Conflict of interest

The authors declared no competing interest.

Additional information

Xiao-Qin Zhang and Karrie Mei-Yee Kiang have been contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11060_2015_1916_MOESM1_ESM.jpg

S-Fig.1: Interspecies conservation analysis of lncRNAs. Three of IDH1 mutation-associated lncRNAs (as above) showed detectable conservation at certain area. a UCSC Genome Browser on Human (hg19) Assembly; b Placental Mammal Basewise Conservation by PhyloP; c Multiz Alignment of Vertebrates. Supplementary material 1 (JPEG 140 kb)

Supplementary material 2 (DOC 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XQ., Kiang, K.MY., Wang, YC. et al. IDH1 mutation-associated long non-coding RNA expression profile changes in glioma. J Neurooncol 125, 253–263 (2015). https://doi.org/10.1007/s11060-015-1916-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1916-9

Keywords

Navigation