Skip to main content
Log in

Increased histone acetylation levels or a serotonin precursor reinstate the context memory impaired by the serotonin receptor blocker methiothepin

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Previously, it was demonstrated that the presumed increase of serotonin (5-HT) release due to the presence of 5-hydroxytryptophan (5-HTP) and changes in histone acetylation levels due to the presence of the histone deacetylase inhibitors sodium butyrate (NaB) and trichostatin A (TSA) reinstate the context memory following its disruption by antimnemonic treatments (protein synthesis blocker anisomycin or a specific inhibitor of protein-kinase Mζ, zeta inhibitory peptide). It is known that a normally functioning serotonergic system is required for successful reconsolidation of context memory in terrestrial snails Helix lucorum. In the present study, we tested possible ways of reinstatement of the context memory after its impairment during reconsolidation with a nonselective antagonist of serotonin receptors methiothepin. We investigated effects of presumed 5-HT increase and histone acetylation increase by injection of the 5-HT precursor 5-HTP or histone deacetylase inhibitors NaB or TSA, correspondingly. It was observed that applications of 5-HTP alone, known to increase the release of 5-HT, or reactivation of memory alone did not restore the methiothepin-impaired context memory, while combination of the 5-HTP + reactivation of memory effectively reinstated the context memory. Additionally, it was observed that the combination of the NaB or TSA plus memory reactivation (reminding or training) was necessary for effective reinstatement of the methiothepin-impaired memory. The data obtained demonstrated that histone deacetylase blockade as well as presumed increase of 5-HT release ameliorated deficits in long-term context memory induced by methiothepin treatment, suggesting that these mechanisms contribute to regulation of the reconsolidation process of context memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data of the current study are available from the corresponding author on reasonable request.

Abbreviations

5-HT:

Serotonin

5-HTP:

5-Hydroxy-L-tryptophan

CEP:

Cognitive epigenetic priming

HDAC:

Histone deacetylase

HDACi:

Histone deacetylase inhibitor

ITM:

Intermediate memory

LTM:

Long-term memory

MET:

Methiothepin

NaB:

Sodium butyrate

TSA:

Thichostatin A

References

  1. Alarcon JM, Malleret G, Touzani K, Vronskaya S, Ishii S, Kandel ER, Barco A (2004) Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42:947–959. https://doi.org/10.1016/j.neuron.2004.05.021

    Article  CAS  PubMed  Google Scholar 

  2. Alberini CM, Kandel ER (2014) The regulation of transcription in memory consolidation. Cold Spring Harb Perspect Biol 7:a021741. https://doi.org/10.1101/cshperspect.a021741

    Article  PubMed  Google Scholar 

  3. Anstey ML, Rogers SM, Ott SR, Burrows M, Simpson SJ (2009) Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts. Science 323:627–630. https://doi.org/10.1126/science.1165939

    Article  CAS  PubMed  Google Scholar 

  4. Balaban PM (2002) Cellular mechanisms of behavioral plasticity in terrestrial snail. Neurosci Biobehav Rev 26:597–630. https://doi.org/10.1016/s0149-7634(02)00022-2

    Article  CAS  PubMed  Google Scholar 

  5. Balaban P, Bravarenko N (1993) Long-Term sensitization and environmental conditioning in terrestrial snails. Exp Brain Res 96:487–493. https://doi.org/10.1007/BF00234116

    Article  CAS  PubMed  Google Scholar 

  6. Balaban PM, Vehovszky A, Maksimova OA, Zakharov IS (1987) Effect of 5,7-dihydroxytryptamine on the food-aversive conditioning in the snail Helix lucorum L. Brain Research 404:201–210. https://doi.org/10.1016/0006-8993(87)91371-0

    Article  CAS  PubMed  Google Scholar 

  7. Balaban PM, Vinarskaya AK, Zuzina AB, Ierusalimsky VN, Malyshev AY (2016) Impairment of the serotonergic neurons underlying reinforcement elicits extinction of the repeatedly reactivated context memory. Sci Rep 6:36933. https://doi.org/10.1038/srep36933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Barichello T, Generoso JS, Simões LR et al (2015) Sodium butyrate prevents memory impairment by re-establishing BDNF and GDNF expression in experimental pneumococcal meningitis. Mol Neurobiol 52:734–740. https://doi.org/10.1007/s12035-014-8914-3

    Article  CAS  PubMed  Google Scholar 

  9. Birdsall TC (1998) 5-Hydroxytryptophan: a clinically effective serotonin precursor. Altern Med Rev 3:271–280.

    CAS  PubMed  Google Scholar 

  10. Blank M, Dornelles AS, Werenicz A et al (2014) Basolateral amygdala activity is required for enhancement of memory consolidation produced by histone deacetylase inhibition in the hippocampus. Neurobiol Learn Mem 111:1–8. https://doi.org/10.1016/j.nlm.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  11. Blank M, Werenicz A, Velho LA et al (2015) Enhancement of memory consolidation by the histone deacetylase inhibitor sodium butyrate in aged rats. Neurosci Lett 594:76–81. https://doi.org/10.1016/j.neulet.2015.03.059.

    Article  CAS  PubMed  Google Scholar 

  12. Bogodvid TK, Andrianov VV, Deryabina IB et al (2017) Responses of withdrawal interneurons to serotonin applications in naïve and learned snails are different. Front Cell Neurosci 11:403. https://doi.org/10.3389/fncel.2017.00403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Borodinova AA, Balaban PM (2020) Epigenetic Regulation as a Basis for Long-Term Changes in the Nervous System: In Search of Specificity Mechanisms. Biochemistry (Mosc) 85:994–966. https://doi.org/10.1134/S0006297920090023

    Article  CAS  PubMed  Google Scholar 

  14. Brownell JE, Allis CD (1996) Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev 6:176–184. https://doi.org/10.1016/s0959-437x(96)80048-7

    Article  CAS  PubMed  Google Scholar 

  15. Burns AM, Gräff J (2021) Cognitive epigenetic priming: leveraging histone acetylation for memory amelioration. Curr Opin Neurobiol 67:75–84. https://doi.org/10.1016/j.conb.2020.08.011

    Article  CAS  PubMed  Google Scholar 

  16. Byerley WF, Judd LL, Reimherr FW, Grosser BI (1987) 5-Hydroxytryptophan: a review of its antidepressant efficacy and adverse effects. J Clin Psychopharmacol 7:127–137

    Article  CAS  PubMed  Google Scholar 

  17. Chen S, Cai D, Pearce K, Sun PY, Roberts AC, Glanzman DL (2014) Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia. ELife 3:e03896. https://doi.org/10.7554/eLife.03896

    Article  PubMed Central  PubMed  Google Scholar 

  18. Cottrell GA, Powell B (1971) Formation of serotonin by isolated serotonin-containing neurons and by isolated non-amine-containing neurons. J Neurochem 18:1695–1697. https://doi.org/10.1111/j.1471-4159.1971.tb03743.x

    Article  CAS  PubMed  Google Scholar 

  19. Deryabina IB, Muranova LN, Andrianov VV, Gainutdinov KL (2018) Impairing of serotonin synthesis by p-chlorphenylanine prevents the forgetting of contextual memory after reminder and the protein synthesis inhibition. Front Pharmacol 9:607. https://doi.org/10.7554/eLife.03896

    Article  PubMed Central  PubMed  Google Scholar 

  20. Dierick HA, Greenspan RJ (2007) Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nat Genet 39:678–682. https://doi.org/10.1038/ng2029

    Article  CAS  PubMed  Google Scholar 

  21. Dyakonova VE, Chistopolsky IA, Dyakonova TL, Vorontsov DD, Sakharov DA (2009) Direct and decarboxylation-dependent effects of neurotransmitter precursors on firing of isolated monoaminergic neurons. J Comp Physiol A 195:515–527. https://doi.org/10.1007/s00359-009-0428-5

    Article  CAS  Google Scholar 

  22. Dyakonova VE, Krushinsky AL (2013) Serotonin precursor (5-hydroxytryptophan) causes substantial changes in the fighting behavior of male crickets, Gryllus bimaculatus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 199:601–609. https://doi.org/10.1007/s00359-013-0804-z

    Article  CAS  PubMed  Google Scholar 

  23. Fass DM, Reis SA, Ghosh B et al (2013) Crebinostat: a novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity. Neuropharmacology 64:81–96. https://doi.org/10.1016/j.neuropharm.2012.06.043

    Article  CAS  PubMed  Google Scholar 

  24. Federman N, Fustiñana MS, Romano A (2009) Histone acetylation is recruited in consolidation as a molecular feature of stronger memories. Learn Mem 16:600–606. https://doi.org/10.1101/lm.1537009

    Article  PubMed  Google Scholar 

  25. Federman N, Fustiñana MS, Romano A (2012) Reconsolidation involves histone acetylation depending on the strength of the memory. Neurosci 219:145–156. https://doi.org/10.1016/j.neuroscience.2012.05.057

    Article  CAS  Google Scholar 

  26. Fickbohm DJ, Katz PS (2000) Paradoxical actions of the serotonin precursor 5-hydroxytryptophan on the activity of identified serotonergic neurons in a simple motor circuit. J Neurosci 20:1622–1634. https://doi.org/10.1523/JNEUROSCI.20-04-01622.2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Fickbohm DJ, Spitzer N, Katz PS (2005) Pharmacological manipulation of serotonin levels in the nervous system of the opisthobranch mollusc Tritonia diomedea. Biol Bull 209:67–74. https://doi.org/10.2307/3593142

    Article  CAS  PubMed  Google Scholar 

  28. Fontán-Lozano A, Romero-Granados R, Troncoso J, Múnera A, Delgado-García JM, Carrión AM (2008) Histone deacetylase inhibitors improve learning consolidation in young and in KA-induced-neurodegeneration and SAMP-8-mutant mice. Mol Cell Neurosci 39:193–201. https://doi.org/10.1016/j.mcn.2008.06.009

    Article  CAS  PubMed  Google Scholar 

  29. Gartside SE, Cowen PJ, Sharp T (1992) Effect of 5-hydroxy-L-tryptophan on the release of 5-HT in rat hypothalamus in vivo as measured by microdialysis. Neuropharmacology 31:9–14. https://doi.org/10.1016/0028-3908(92)90154-h

    Article  CAS  PubMed  Google Scholar 

  30. Gräff J, Joseph NF, Horn ME et al (2014) Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell 156:261276. https://doi.org/10.1016/j.cell.2013.12.020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Guan Z, Giustetto M, Lomvardas S et al (2002) Integration of Long-Term-Memory-Related Synaptic Plasticity Involves Bidirectional Regulation of Gene Expression and Chromatin Structure. Cell 111:483–493. https://doi.org/10.1016/s0092-8674(02)01074-7

    Article  CAS  PubMed  Google Scholar 

  32. Hu YT, Tang CK, Wu CP, Wu PC, Yang EC, Tai CC, Wu YL (2018) Histone deacetylase inhibitor treatment restores memory-related gene expression and learning ability in neonicotinoid-treated Apis Mellifera. Insect Mol Bio 27:512–521. https://doi.org/10.1111/imb.12390

    Article  CAS  Google Scholar 

  33. Jacobsen JPR, Krystal AD, Krishnan KRR, Caron MG (2016) Adjunctive 5-Hydroxytryptophan Slow-Release for Treatment-Resistant Depression: Clinical and Preclinical Rationale. Trends Pharmacol Sci 37:933–944. https://doi.org/10.1016/j.tips.2016.09.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kandel ER, Schwartz JH (1982) Molecular biology of an elementary form of learning: modulation of transmitter release by cyclic AMP. Science 218:433–443. https://doi.org/10.1126/science.6289442

    Article  CAS  PubMed  Google Scholar 

  35. Kennedy CD, Houmes SW, Wyrick KL, Kammerzell SM, Lukowiak K, Sorg BA (2010) Methamphetamine enhances memory of operantly conditioned respiratory behavior in the snail Lymnaea stagnalis. J Exp Biol 213:2055–2065. https://doi.org/10.1242/jeb.042820

    Article  PubMed  Google Scholar 

  36. Ko HG, Kim JI, Sim SE et al (2016) The role of nuclear PKMζ in memory maintenance. Neurobiol Learn Mem 135:50–56. https://doi.org/10.1016/j.nlm.2016.06.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Korzus E, Rosenfeld MG, Mayford M (2004) CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42:961–972. https://doi.org/10.1016/j.neuron.2004.06.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Lattal KM, Barrett RM, Wood MA (2007) Systemic or intrahippocampal delivery of histone deacetylase inhibitors facilitates fear extinction. Behav Neurosci 121:1125–1131. https://doi.org/10.1037/0735-7044.121.5.1125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Levenson JM, O'Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD (2004) Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 279:40545–40559. https://doi.org/10.1074/jbc.M402229200

    Article  CAS  PubMed  Google Scholar 

  40. Levenson JM, Sweatt JD (2005) Epigenetic mechanisms in memory formation. Nat Rev Neurosci 6:108–118. https://doi.org/10.1038/nrn1604

    Article  CAS  PubMed  Google Scholar 

  41. Lopez-Atalaya JP, Ito S, Valor LM, Benito E, Barco A (2013) Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition. Nucleic Acids Res 41:8072–8084. https://doi.org/10.1093/nar/gkt590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Lynn-Bullock CP, Welshhans K, Pallas SL, Katz PS (2004) The effect of oral 5-HTP administration on 5-HTP and 5-HT immunoreactivity in monoaminergic brain regions of rats. J Chem Neuroanat 27:129–138. https://doi.org/10.1016/j.jchemneu.2004.02.003

    Article  CAS  PubMed  Google Scholar 

  43. Malvaez M, McQuown SC, Rogge GA et al (2013) HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc Natl Acad Sci U S A 110:2647–2652. https://doi.org/10.1073/pnas.1213364110

    Article  PubMed Central  PubMed  Google Scholar 

  44. Marinesco S, Wickremasinghe N, Kolkman KE, Carew TJ (2004) Serotonergic modulation in aplysia. II. Cellular and behavioral consequences of increased serotonergic tone. J Neurophysiol 92:2487–2496. https://doi.org/10.1152/jn.00210.2004

    Article  CAS  PubMed  Google Scholar 

  45. McCaman MW, Ono JK, McCaman RE (1984) 5-hydroxytryptamine measurements in molluscan ganglia and neurons using a modified radioenzymatic assay. J Neurochem 43:91–99. https://https://doi.org/10.1111/j.1471-4159.1984.tb06682.x

    Article  CAS  PubMed  Google Scholar 

  46. Misanin J R, Miller RR, Lewis DJ (1968) Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science 160:554–555. https://doi.org/10.1126/science.160.3827.554

    Article  CAS  PubMed  Google Scholar 

  47. Nader K, Schafe GE, Le Doux JE (2000) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:722–726. https://doi.org/10.1038/35021052

    Article  CAS  PubMed  Google Scholar 

  48. Parvez K, Moisseev V, Lukowiak K (2006) A context-specific single contingent-reinforcing stimulus boosts intermediate-term memory into long-term memory. Eur J Neurosci 24:606–616. https://doi.org/10.1111/j.1460-9568.2006.04952.x

    Article  PubMed  Google Scholar 

  49. Parvez K, Stewart O, Sangha S, Lukowiak K (2005) Boosting intermediate-term into long-term memory. J Exp Biol 208:1525–1536. https://doi.org/10.1242/jeb.01545

    Article  PubMed  Google Scholar 

  50. Pearce K, Cai D, Roberts AC, Glanzman DL (2017) Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia. Elife 6:e18299. https://doi.org/10.7554/eLife.18299

    Article  PubMed Central  PubMed  Google Scholar 

  51. Peleg S, Sananbenesi F, Zovoilis A et al (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328:753–756. https://doi.org/10.1126/science.1186088

    Article  CAS  PubMed  Google Scholar 

  52. van Praag HM (1981) Management of depression with serotonin precursors. Biol Psychiatry 16:291–310

    PubMed  Google Scholar 

  53. Pratelli M, Migliarini S, Pelosi B, Napolitano F, Usiello A, Pasqualetti M (2017) Perturbation of Serotonin Homeostasis during Adulthood Affects Serotonergic Neuronal Circuitry. eNeuro 4:ENEURO.0376-16.2017. https://doi.org/10.1523/ENEURO.0376-16.2017

    Article  PubMed Central  PubMed  Google Scholar 

  54. Roozendaal B, Hernandez A, Cabrera SM (2010) Membrane-associated glucocorticoid activity is necessary for modulation of long-term memory via chromatin modification. J. Neurosci 30:5037–5046. https://doi.org/10.1523/JNEUROSCI.5717-09.2010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Sakharov DA (1991) Use of transmitter precursors in gastropod neuroethology. In: Kits KS, Boer HH, Joosse J (eds) Molluscan neurobiology. North-Holland, Amsterdam, pp 236–242

    Google Scholar 

  56. Stefanko DP, Barrett RM, Ly AR, Reolon GK, Wood MA (2009) Modulation of long-term memory for object recognition via HDAC inhibition. Proc Natl Acad Sci USA 106:9447–9452. https://doi.org/10.1073/pnas.0903964106

    Article  PubMed Central  PubMed  Google Scholar 

  57. Tiunova AA, Toropova KA, Konovalova EV, Anokhin KV (2012) Effects of systemic administration of histone deacetylase inhibitor on memory formation and immediate early gene expression in chick brain. Bull Exp Biol Med 153:742–745. https://doi.org/10.1007/s10517-012-1815-4

    Article  CAS  PubMed  Google Scholar 

  58. Tsyganov VV (2010) Coordination between locomotor and respiratory rhythms in the great ramshorn snail Planorbarius corneus: transmitter-dependent modifications. Izv Akad Nauk Ser Biol 3:355–362

    Google Scholar 

  59. Ureshi M, Dainobu M, Sakai M (2002) Serotonin precursor (5-hydroxytryptophan) has a profound eVect on the post-copulatory time-Wxed sexually refractory stage in the male cricket, Gryllus bimaculatus DeGeer. J Comp Physiol 188A:767–779. https://doi.org/10.1007/s00359-002-0364-0

    Article  CAS  Google Scholar 

  60. Vecsey CG, Hawk JD, Lattal KM et al (2007) Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J Neurosci 27:6128–6140. https://doi.org/10.1523/JNEUROSCI.0296-07.2007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Vinarskaya AK, Balaban PM, Roshchin MV, Zuzina AB (2021) Sodium butyrate as a selective cognitive enhancer for weak or impaired memory. Neurobiol Learn Mem 180:107414. https://doi.org/10.1016/j.nlm.2021.107414

    Article  CAS  PubMed  Google Scholar 

  62. Yeh SH, Lin CH, Gean PW (2004) Acetylation of nuclear factor-kappaB in rat amygdala improves long-term but not short-term retention of fear memory. Mol Pharmacol 65:1286–1292. https://doi.org/10.1124/mol.65.5.1286

    Article  CAS  PubMed  Google Scholar 

  63. Zhu LJ, Sun YQ, Wang S, Shi HJ, Li N (2021) Involvement of 5-HT1A receptor-mediated histone acetylation in the regulation of depression. Neuroreport 32:1049–1057. https://doi.org/10.1097/WNR.0000000000001693

    Article  CAS  PubMed  Google Scholar 

  64. Zuzina AB, Vinarskaya AK, Balaban PM (2019) Increase in serotonin precursor levels reinstates the context memory during reconsolidation. Invert Neurosci 19:8. https://doi.org/10.1007/s10158-019-0227-9

    Article  CAS  PubMed  Google Scholar 

  65. Zuzina AB, Vinarskaya AKh, Balaban PM (2020) Histone deacetylase inhibitors rescue the impaired memory in terrestrial snails. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 206:639–649. https://doi.org/10.1007/s00359-020-01422-w

    Article  CAS  PubMed  Google Scholar 

  66. Zuzina AB, Vinarskaya AKh, Balaban PM, Roshchin MV (2021) Histone deacetylase inhibitor prevents memory impairment by methiothepin. In: Advances in cognitive research, artificial intelligence and neuroinformatics. Springer, Frankfurt. pp 619–631

    Chapter  Google Scholar 

Download references

Funding

This study was supported by a grant from the Russian Ministry of Education and Science No. 075–15–2020–801.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally.

Corresponding author

Correspondence to Alena B. Zuzina.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving snails were in accordance with the ethical standards and approved (#012 from 10.10.2014) by the Ethical Committee of the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuzina, A.B., Vinarskaya, A.K. Increased histone acetylation levels or a serotonin precursor reinstate the context memory impaired by the serotonin receptor blocker methiothepin. Neurosci Behav Physi 53, 460–472 (2023). https://doi.org/10.1007/s11055-022-01303-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01303-6

Keywords

Navigation