Skip to main content

Histone Deacetylase Inhibitor Prevents Memory Impairment by Methiothepin

  • Conference paper
  • First Online:
Advances in Cognitive Research, Artificial Intelligence and Neuroinformatics (Intercognsci 2020)

Abstract

The role of histone acetylation in memory reinstatement after its disruption by antimnemonic drugs has been shown recently. It is known that a normally functioning serotonergic system is required for successful reconsolidation of context memory in terrestrial snails Helix lucorum. In the present study, using the nonselective antagonist of serotonergic receptors methiothepin and the histone deacetylase (HDAC) inhibitor sodium butyrate, we studied the role of histone acetylation in the maintenance and restoration of context memory after its impairment with methiothepin. The results obtained clearly demonstrate that memory impaired by methiothepin during reconsolidation is not restored later under conditions of an increased level of histone acetylation due to administration of sodium butyrate, both with weak memory reactivation (reminder of context) and with strong memory reactivation (electric shock). However, simultaneous administration of HDAC inhibitor sodium butyrate and a blocker of serotonin receptors methiothepin under conditions of memory reactivation prevented the impairment of context memory. The data obtained demonstrated that histone acetylation is a regulatory component for memory maintenance and reconsolidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

Serotonin

HDAC:

Histone deacetylase

MET:

Methiothepin

NaB:

Sodium butyrate

PKMζ:

Protein-kinase Mζ

ZIP:

Zeta Inhibitory Peptide

References

  1. Alberini, C.M., Kandel, E.R.: The regulation of transcription in memory consolidation. Cold Spring Harb. Perspect. Biol. 7, a021741 (2014). https://doi.org/10.1101/cshperspect.a021741

    Article  Google Scholar 

  2. Balaban, P.M., Vehovszky, A., Maximova, O.A., Zakharov, I.S.: Effect of 5,7-dihydroxytryptamine on the food-aversive conditioning in the snail Helix Lucorum L. Brain Res. 404, 201–210 (1987). https://doi.org/10.1016/0006-8993(87)91371-0

    Article  Google Scholar 

  3. Balaban, P., Bravarenko, N.: Long-term sensitization and environmental conditioning in terrestrial snails. Exp. Brain Res. 96, 487–493 (1993). https://doi.org/10.1007/BF00234116

    Article  Google Scholar 

  4. Balaban, P.M.: Cellular mechanisms of behavioral plasticity in terrestrial snail. Neurosci. Biobehav. Rev. 26, 597–630 (2002). https://doi.org/10.1016/s0149-7634(02)00022-2

    Article  Google Scholar 

  5. Kandel, E.R., Schwartz, J.H.: Molecular biology of an elementary form of learning: modulation of transmitter release by cuclic AMP. Science 218, 433–443 (1982). https://doi.org/10.1126/science.6289442

    Article  Google Scholar 

  6. Balaban, P.M., Vinarskaya, A.K., Zuzina, A.B., Ierusalimsky, V.N., Malyshev, A.Y.: Impairment of the serotonergic neurons underlying reinforcement elicits extinction of the repeatedly reactivated context memory. Sci. Rep. 6, 36933 (2016). https://doi.org/10.1038/srep36933

    Article  Google Scholar 

  7. Deryabina, I.B., Muranova, L.N., Andrianov, V.V., Gainutdinov, K.L.: Impairing of serotonin synthesis by P-chlorphenylanine prevents the forgetting of contextual memory after reminder and the protein synthesis inhibition. Front. Pharmacol. 9, 607 (2018). https://doi.org/10.3389/fphar.2018.00607

    Article  Google Scholar 

  8. Alarcón, J.M., Malleret, G., Touzani, K., Vronskaya, S., Ishii, S., Kandel, E.R., Barco, A.: Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42, 947–959 (2004). https://doi.org/10.1016/j.neuron.2004.05.021

    Article  Google Scholar 

  9. Bredy, T.W., Wu, H., Crego, C., Zellhoefer, J., Sun, Y.E., Barad, M.: Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn. Mem. 14, 268–276 (2007). https://doi.org/10.1101/lm.500907

    Article  Google Scholar 

  10. Bredy, T.W., Barad, M.: The histone deacetylase inhibitor valproic acid enhances acquisition, extinction, and reconsolidation of conditioned fear. Learn. Mem. 15, 39–45 (2008). https://doi.org/10.1101/lm.801108

    Article  Google Scholar 

  11. Hemstedt, T.J., Lattal, K.M., Wood, M.A.: Reconsolidation and extinction: Using epigenetic signatures to challenge conventional wisdom. Neurobiol. Learn. Mem. 142, 55–65 (2017). https://doi.org/10.1016/j.nlm.2017.01.007

    Article  Google Scholar 

  12. Itzhak, Y., Anderson, K.L., Kelley, J.B., Petkov, M.: Histone acetylation rescues contextual fear conditioning in nNOS KO mice and accelerates extinction of cued fear conditioning in wild type mice. Neurobiol. Learn. Mem. 97, 409–417 (2012). https://doi.org/10.1016/j.nlm.2012.03.005

    Article  Google Scholar 

  13. Korzus, E., Rosenfeld, M.G., Mayford, M.: CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42, 961–972 (2004). https://doi.org/10.1016/j.neuron.2004.06.002

    Article  Google Scholar 

  14. Lattal, K.M., Barrett, R.M., Wood, M.A.: Systemic or intrahippocampal delivery of histone deacetylase inhibitors facilitates fear extinction. Behav. Neurosci. 121, 1125–1131 (2007). https://doi.org/10.1037/0735-7044.121.5.1125

    Article  Google Scholar 

  15. Levenson, J.M., O’Riordan, K.J., Brown, K.D., Trinh, M.A., Molfese, D.L., Sweatt, J.D.: Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem. 279, 40545–40559 (2004). https://doi.org/10.1074/jbc.M402229200

    Article  Google Scholar 

  16. Si, J., Yang, J., Xue, L., Yang, C., Luo, Y., Shi, H., Lu, L.: Activation of NF-κB in basolateral amygdala is required for memory reconsolidation in auditory fear conditioning. PLoS ONE 7, e43973 (2012). https://doi.org/10.1371/journal.pone.0043973

    Article  Google Scholar 

  17. Vecsey, C.G., Hawk, J.D., Lattal, K.M., Stein, J.M., Fabian, S.A., Attner, M.A., Cabrera, S.M., McDonough, C.B., Brindle, P.K., Abel, T., Wood, M.A.: Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J. Neurosci. 27, 6128–6140 (2007). https://doi.org/10.1523/JNEUROSCI.0296-07.2007

    Article  Google Scholar 

  18. Villain, H., Florian, C., Roullet, P.: HDAC inhibition promotes both initial consolidation and reconsolidation of spatial memory in mice. Sci. Rep. 6, 27015 (2016). https://doi.org/10.1038/srep27015

    Article  Google Scholar 

  19. Barichello, T., Generoso, J.S., Simões, L.R., Faller, C.J., Ceretta, R.A., Petronilho, F., Lopes-Borges, J., Valvassori, S.S., Quevedo, J.: Sodium butyrate prevents memory impairment by re-establishing BDNF and GDNF expression in experimental pneumococcal meningitis. Mol. Neurobiol. 52, 734–740 (2015). https://doi.org/10.1007/s12035-014-8914-3

    Article  Google Scholar 

  20. Hu, Y.T., Tang, C.K., Wu, C.P., Wu, P.C., Yang, E.C., Tai, C.C., Wu, Y.L.: Histone deacetylase inhibitor treatment restores memory-related gene expression and learning ability in neonicotinoid-treated Apis Mellifera. Insect Mol. Boil. 27, 512–521 (2018). https://doi.org/10.1111/imb.12390

    Article  Google Scholar 

  21. Chen, S., Cai, D., Pearce, K., Sun, P.Y., Roberts, A.C., Glanzman, D.L.: Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia. ELife. 3, e03896 (2014). https://doi.org/10.7554/eLife.03896

    Article  Google Scholar 

  22. Ko, H.G., Kim, J.I., Sim, S.E., Kim, T., Yoo, J., Choi, S.L., Baek, S.H., Yu, W.J., Yoon, J.B., Sacktor, T.C., Kaang, B.K.: The role of nuclear PKMζ in memory maintenance. Neurobiol. Learn. Mem. 135, 50–56 (2016). https://doi.org/10.1016/j.nlm.2016.06.010

    Article  Google Scholar 

  23. Zuzina, A.B., Vinarskaya, A.K., Balaban, P.M.: Histone deacetylase inhibitors rescue the impaired memory in terrestrial snails. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 206, 639–649 (2020). doi: https://doi.org/10.1007/s00359-020-01422-w

  24. Zuzina, A.B., Vinarskaya, A.K., Balaban, P.M.: Increase in serotonin precursor levels reinstates the context memory during reconsolidation. Invert. Neurosci. 19, 8 (2019). https://doi.org/10.1007/s10158-019-0227-9

    Article  Google Scholar 

  25. Asaoka, N., Nagayasu, K., Nishitani, N., Yamashiro, M., Shirakawa, H., Nakagawa, T., Kaneko, S.: Inhibition of histone deacetylases enhances the function of serotoninergic neurons in organotypic raphe slice cultures. Neurosci. Lett. 593, 72–77 (2015). https://doi.org/10.1016/j.neulet.2015.03.028

    Article  Google Scholar 

  26. Holloway, T., González-Maeso, J.: Epigenetic mechanisms of serotonin signaling. ACS Chem. Neurosci. 6, 1099–1109 (2015). https://doi.org/10.1021/acschemneuro.5b00033

    Article  Google Scholar 

  27. Guan, Z., Giustetto, M., Lomvardas, S., Kim, J.H., Miniaci, M.C., Schwartz, J.H., Thanos, D., Kandel, E.R.: Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell 111, 483–493 (2002). https://doi.org/10.1016/s0092-8674(02)01074-7

    Article  Google Scholar 

  28. Walther, D.J., Peter, J.U., Winter, S., Holtje, M., Paulmann, N., Grohmann, M., Vowinckel, J., Alamo-Bethencourt, V., Wilhelm, C.S., Ahnert-Hilger, G., Bader, M.: Serotonylation of small GTPases is a signal transduction pathway that triggers platelet α-granule release. Cell 115, 851–862 (2003). https://doi.org/10.1016/s0092-8674(03)01014-6

    Article  Google Scholar 

  29. Dai, Y., Dudek, N.L., Patel, T.B., Muma, N.A.: Transglutaminase-catalyzed transamidation: a novel mechanism for Rac1 activation by 5-hydroxytryptamine 2A receptor stimulation. J. Pharmacol. Exp. Ther. 326, 153–162 (2008). https://doi.org/10.1124/jpet.107.135046

    Article  Google Scholar 

  30. Dai, Y., Dudek, N.L., Li, Q., Muma, N.A.: Phospholipase C, Ca2+, and calmodulin signaling are required for 5-HT2A receptor-mediated transamidation of Rac1by transglutaminase. Psychopharmacology 213, 403–412 (2011). https://doi.org/10.1007/s00213-010-1984-7

    Article  Google Scholar 

  31. Farrelly, L.A., Thompson, R.E., Zhao, S., Lepack, A.E., Lyu, Y., Bhanu, N.V., Zhang, B., Loh, Y.-H.E., Ramakrishnan, A., Vadodaria, K.C., Heard, K.J., Erikson, G., Nakadai, T., Bastle, R.M., Lukasak, B.J., Zebroski, H., 3rd., Alenina, N., Bader, M., Berton, O., Roeder, R.G., Molina, H., Gage, F.H., Shen, L., Garcia, B.A., Li, H., Muir, T.W., Maze, I.: Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me. Nature 567, 535–539 (2019). https://doi.org/10.1038/s41586-019-1024-7

    Article  Google Scholar 

  32. Balaban, P.M., Roshchin, M., Timoshenko, A., Zuzina, A.B., Lemak, M., Ierusalimsky, V.N., Aseyev, N.A., Malyshev, A.Y.: Homolog of protein kinase Mzeta maintains context aversive memory and underlying long-term facilitation in terrestrial snail Helix. Front. Cell. Neurosci. 9, 222 (2015). https://doi.org/10.3389/fncel.2015.00222

    Article  Google Scholar 

  33. Abramova, M.S., Nistratova, V.L., Moskvitin, A.A., Pivovarov, A.S.: Methiothepin-sensitive serotonin receptors are involved in the postsynaptic mechanism of sensitization of the defensive response in the common snail. Neurosci. Behav. Physiol. 36, 589–596 (2006). https://doi.org/10.1007/s11055-006-0062-4

    Article  Google Scholar 

  34. Solntseva, S.V., Nikitin, V.P.: Neurochemical mechanisms of food aversion conditioning consolidation in snail Helix lucorum. Ross. Fiziol. Zh. Im. I. M. Sechenova. 94, 1259–1269 (2008)

    Google Scholar 

  35. Kwapis, J.L., Jarome, T.J., Lonergan, M.E., Helmstetter, F.J.: Protein kinase Mzeta maintains fear memory in the amygdala but not in the hippocampus. Behav. Neurosci. 123, 844–850 (2009). https://doi.org/10.1037/a0016343

    Article  Google Scholar 

  36. Kwapis, J.L., Jarome, T.J., Gilmartin, M.R., Helmstetter, F.J.: Intra-amygdala infusion of the protein kinase Mzeta inhibitor ZIP disrupts foreground context fear memory. Neurobiol. Learn. Mem. 98, 148–153 (2012). https://doi.org/10.1016/j.nlm.2012.05.003

    Article  Google Scholar 

  37. Migues, P.V., Hardt, O., Wu, D.C., Gamache, K., Sacktor, T.C., Wang, Y.T., Nader, K.: PKMzeta maintains memories by regulating GluR2-dependent AMPA receptor trafficking. Nat. Neurosci. 13, 630–634 (2010). https://doi.org/10.1038/nn.2531

    Article  Google Scholar 

  38. Pastalkova, E., Serrano, P., Pinkhasova, D., Wallace, E., Fenton, A.A., Sacktor, T.C.: Storage of spatial information by the maintenance mechanism of LTP. Science 313, 1141–1144 (2006). https://doi.org/10.1126/science.1128657

    Article  Google Scholar 

  39. Serrano, P., Friedman, E.L., Kenney, J., Taubenfeld, S.M., Zimmerman, J.M., Hanna, J., Alberini, C., Kelley, A.E., Maren, S., Rudy, J.W., Yin, J.C., Sacktor, T.C., Fenton, A.A.: PKMzeta maintains spatial, instrumental, and classically conditioned long-term memories. PLoS Biol. 6, 2698–2706 (2008). https://doi.org/10.1371/journal.pbio.0060318

    Article  Google Scholar 

  40. Shema, R., Sacktor, T.C., Dudai, Y.: Rapid erasure of long-term memory associations in the cortex by an inhibitor of PKM. Science 317, 951–953 (2007). https://doi.org/10.1126/science.1144334

    Article  Google Scholar 

  41. Yao, Y., Kelly, M.T., Sajikumar, S., Serrano, P., Tian, D., Bergold, P.J., Frey, J.U., Sacktor, T.C.: PKM zeta maintains late long-term potentiation by N-ethylmaleimide-sensitive factor/GluR2-dependent trafficking of postsynaptic AMPA receptors. J. Neurosci. 28, 7820–7827 (2008). https://doi.org/10.1523/JNEUROSCI.0223-08.2008

    Article  Google Scholar 

  42. Yeh, S.H., Lin, C.H., Gean, P.W.: Acetylation of nuclear factor-kappaB in rat amygdala improves long-term but not short-term retention of fear memory. Mol. Pharmacol. 65, 1286–1292 (2004). https://doi.org/10.1124/mol.65.5.1286

    Article  Google Scholar 

  43. Bousiges, O., Vasconcelos, A.P., Neidl, R., Cosquer, B., Herbeaux, K., Panteleeva, I., Loeffler, J.P., Cassel, J.C., Boutillier, A.L.: Spatial memory consolidation is associated with induction of several lysine-acetyltransferase (histone acetyltransferase) expression levels and H2B/H4 acetylation-dependent transcriptional events in the rat hippocampus. Neuropsychopharmacology 35, 2521–2537 (2010). https://doi.org/10.1038/npp.2010.117

    Article  Google Scholar 

  44. Mahan, A.L., Mou, L., Shah, N., Hu, J.-H., Worley, P.F., Ressler, K.J.: Epigenetic modulation of Homer1a transcription regulation in amygdala and hippocampus with Pavlovian fear conditioning. J. Neurosci. 32, 4651–4659 (2012). https://doi.org/10.1523/JNEUROSCI.3308-11.2012

    Article  Google Scholar 

  45. Peleg, S., Sananbenesi, F., Zovoilis, A., Burkhardt, S., Bahari-Javan, S., Agis-Balboa, R.C., Cota, P., Wittnam, J.L., Gogol-Doering, A., Opitz, L., Salinas-Riester, G., Dettenhofer, M., Kang, H., Farinelli, L., Chen, W., Fischer, A.: Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328, 753–756 (2010). https://doi.org/10.1126/science.1186088

    Article  Google Scholar 

  46. Hebbes, T.R., Thorne, A.W., Crane-Robinson, C.: A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7, 1395–1402 (1988)

    Article  Google Scholar 

  47. Brownell, J.E., Allis, C.D.: Special HATs for special occasions: Linking histone acetylation to chromatin assembly and gene activation. Curr. Opin. Genet. Dev. 6, 176–184 (1996). https://doi.org/10.1016/s0959-437x(96)80048-7

    Article  Google Scholar 

  48. Gräff, J., Joseph, N.F., Horn, M.E., Samiei, A., Meng, J., Seo, J., Rei, D., Bero, A.W., Phan, T.X., Wagner, F., Holson, E., Xu, J., Sun, J., Neve, R.L., Mach, R.H., Haggarty, S.J., Tsai, L.H.: Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell 156, 261–276 (2014). https://doi.org/10.1016/j.cell.2013.12.020

    Article  Google Scholar 

  49. Levenson, J.M., Sweatt, J.D.: Epigenetic mechanisms in memory formation. Nat. Rev. Neurosci. 6, 108–118 (2005). https://doi.org/10.1038/nrn1604

    Article  Google Scholar 

  50. Pearce, K., Cai, D., Roberts, A.C., Glanzman, D.L.: Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia. Elife. 6, e18299 (2017). https://doi.org/10.7554/eLife.18299

    Article  Google Scholar 

Download references

Aknowledgments

This study was supported by grant of Russian Science Foundation 19–75-10067 (behavioral experiments), grant of Russian Science Foundation 20–75-00090 (experiments with methiothepin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alena B. Zuzina .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest.

Author Contributions. The authors contributed equally. All authors read and approved the final manuscript.

Ethical Approval: All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving snails were in accordance with the ethical standards and approved (#011 from 10.10.2019) by Ethical Committee of the Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zuzina, A.B., Vinarskaya, A.K., Balaban, P.M., Roshchin, M.V. (2021). Histone Deacetylase Inhibitor Prevents Memory Impairment by Methiothepin. In: Velichkovsky, B.M., Balaban, P.M., Ushakov, V.L. (eds) Advances in Cognitive Research, Artificial Intelligence and Neuroinformatics. Intercognsci 2020. Advances in Intelligent Systems and Computing, vol 1358. Springer, Cham. https://doi.org/10.1007/978-3-030-71637-0_71

Download citation

Publish with us

Policies and ethics