Skip to main content

Advertisement

Log in

Mechanisms of Cerebral Angiogenesis in Health and Brain Pathology

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This literature review assesses the characteristics of the cerebral microcirculatory system. The development and maturation of the microcirculation of the brain includes complex interactions between endothelial cells, which are regulated by all other brain cell types (pericytes, astrocytes, microglia, neurons). The mechanisms by which pericytes are involved in the process of assembly of neurovascular units is discussed, along with the functional importance of the vascular basement membrane in the process of angiogenesis, the role of astrocytes in barrier formation and vessel remodeling, and the involvement of microglia in the processes of forming new vascular connections. This article considers the mechanisms of regulation of cerebral angiogenesis in health and identifies the characteristics of angiogenesis in cerebrovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Kuvacheva, A. V. Morgun, E. D. Khilazheva, et al., “Features of the proliferation of blood:brain barrier cells of suppression of HIF-1 activity in vitro,” Sibirsk. Med. Obozr., 98, No. 2, 51–56 (2016).

    Google Scholar 

  2. V. M. Chertok, N. V. Zakharchuk, and A. G. Chertok, “Cellular and molecular mechanisms of the regulation of angiogenesis in the brain,” Zh. Nevrol. Psikhiat., No. 8, 43–55 (2017).

  3. N. J. Abbott, L. Rönnbäck, and E. Hansson, “Astrocyte-endothelial interactions at the blood–brain barrier,” Nat. Rev. Neurosci., 7, No. 1, 41–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. W. M. Amselgruber, M. Schäfer, and F. Sinowatz, “Angiogenesis in the bovine corpus luteum: an immunocytochemical and ultrastructural study,” Anat. Histol. Embryol., 28, No. 3, 157–166 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. K. Arai, G. Jin, D. Navaratna, and E. H. Lo, “Brain angiogenesis in developmental and pathological processes: neurovascular injury and angiogenic recovery after stroke,” FEBS J., 276, No. 17, 4644–4652 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. Armulik, A. Abramsson, and C. Betsholtz, “Endothelial/pericyte interactions,” Circ. Res., 97, No. 6, 512–523 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. A. Armulik, G. Genové, M. Mäe, et al., “Pericytes regulate the blood–brain barrier,” Nature, 468, No. 7323, 557–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. A. Arvidsson, Z. Kokaia, and O. Lindvall, “N-methyl-D-aspartate receptor-mediated increase of neurogenesis in adult rat dentate gyrus following stroke,” Eur. J. Neurosci., 14, No. 1, 10–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. V. L. Bautch and J. M. James, “Neurovascular development: the beginning of a beautiful friendship,” Cell Adh. Migr., 3, No. 2, 199–204 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. A. Becerra-Calixto and G. P. Cardona-Gomez, “The role of astrocytes in neuroprotection after brain stroke: potential in cell therapy,” Front. Mol. Neurosci., 10, 88 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. R. D. Bell, E. A. Winkler, A. P. Sagare, et al., “Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging,” Neuron, 68, No. 3, 409–427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Ben-Zvi, B. Lacoste, E. Kur, et al., “Mfsd2a is critical for the formation and function of the blood–brain barrier,” Nature, 509, No. 7501, 507–511 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. R. Blanco and H. Gerhardt, “VEGF and Notch in tip and stalk cell selection,” Cold Spring Harb. Perspect. Med., 3, No. 1, a006569 (2013).

  14. P. Blinder, P. S. Tsai, J. P. Kaufhold, et al., “The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow,” Nat. Neurosci., 16, No. 7, 889–897 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. L. Bozoyan, J. Khlghatyan, and A. Saghatelyan, “Astrocytes control the development of the migration-promoting vasculature scaffold in the postnatal brain via VEGF signaling,” J. Neurosci., 32, No. 5, 1687–1704 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. P. H. Burri, R. Hlushchuk, and V. Djonov, “Intussusceptive angiogenesis: its emergence, its characteristics, and its significance,” Dev. Dyn., 231, No. 3, 474–488 (2004).

    Article  PubMed  Google Scholar 

  17. F. L. Cardoso, D. Brites, and M. A. Brito, “Looking at the blood–brain barrier: molecular anatomy and possible investigation approaches,” Brain Res. Rev., 64, No. 2, 328–363 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. P. Carmeliet and M. Tessier-Lavigne, “Common mechanisms of nerve and blood vessel wiring,” Nature, 436, No. 7048, 193–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. J. Chen, Y. Luo, H. Hui, et al., “CD146 coordinates brain endothelial cell-pericyte communication for blood–brain barrier development,” Proc. Natl. Acad. Sci. USA, 114, No. 36, E7622–E7631 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. J. A. Clayton, D. Chalothorn, and J. E. Faber, “Vascular endothelial growth factor-A specifies formation of native collaterals and regulates collateral growth in ischemia,” Circ. Res., 103, No. 9, 1027–1036 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. V. Coelho-Santos and A. Y. Shih, “Postnatal development of cerebrovascular structure and the neurogliovascular unit,” Wiley Interdiscip. Rev. Dev. Biol., 9, No. 2, e363 (2020).

  22. R. Daneman, D. Agalliu, L. Zhou, et al., “Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis,” Proc. Natl. Acad. Sci. USA, 106, No. 2, 641–646 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. R. Daneman, L. Zhou, A. A. Kebede, and B. A. Barres, “Pericytes are required for blood–brain barrier integrity during embryogenesis,” Nature, 468, No. 7323, 562–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. H. M. Eilken, R. Diéguez-Hurtado, I. Schmidt, et al., “Pericytes regulate VEGF-induced endothelial sprouting through VEGFR1,” Nat. Commun., 8, No. 1, 574 (2017).

  25. C. J. Ek, A. Wong, S. A. Liddelow, et al., “Efflux mechanisms at the developing brain barriers: ABC-transporters in the fetal and postnatal rat,” Toxicol. Lett., 197, No. 1, 51–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. S. C. Fagan, D. C. Hess, E. J. Hohnadel, et al., “Targets for vascular protection after acute ischemic Stroke,” Stroke, 35, No. 9, 2220–2225 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. A. Fantin, J. M. Vieira, G. Gestri, et al., “Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction,” Blood, 116, No. 5, 829–840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. J. A. Forsythe, B. H. Jiang, N. V. Iyer, et al., “Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1,” Mol. Cell Biol., 16, No. 9, 4604–4613 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J. Gautam and Y. Yao, “Roles of pericytes in stroke pathogenesis,” Cell Transplant., 27, No. 12, 1798–1808 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. W. P. Ge, A. Miyawaki, F. H. Gage, et al., “Local generation of glia is a major astrocyte source in postnatal cortex,” Nature, 484, No. 7394, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. H. Gerhardt, M. Golding, M. Fruttiger, et al., “VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia,” J. Cell Biol., 161, No. 6, 1163–1177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. D. B. Gould, F. C. Phalan, G. J. Breedveld, et al., “Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly,” Science, 308, No. 5725, 1167–1171 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. T. M. Hansen, A. J. Moss, and N. P. Brindle, “Vascular endothelial growth factor and angiopoietins in neurovascular regeneration and protection following stroke,” Curr. Neurovasc. Res., 5, No. 4, 236–245 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. D. A. Hartmann, R. G. Underly, R. I. Grant, et al., “Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice,” Neurophotonics, 2, No. 4, 041402 (2015).

  35. M. Hatakeyama, I. Ninomiya, and M. Kanazawa, “Angiogenesis and neuronal remodeling after ischemic stroke,” Neural Regen. Res., 15, No. 1, 16–19 (2020).

    Article  PubMed  Google Scholar 

  36. T. Hayashi, N. Noshita, T. Sugawara, and P. H. Chan, “Temporal profile of angiogenesis and expression of related genes in the brain after ischemia,” J. Cereb. Blood Flow Metab., 23, No. 2, 166–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. M. Hellström, H. Gerhardt, M. Kalén, et al., “Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis,” J. Cell Biol., 153, No. 3, 543–554 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  38. M. Hellström, M. Kalén, P. Lindahl, et al., “Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse,” Development, 126, No. 14, 3047–3055 (1999).

    Article  PubMed  Google Scholar 

  39. N. C. Inestrosa and L. Varela-Nallar, “Wnt signalling in neuronal differentiation and development,” Cell Tissue Res., 359, No. 1, 215–223 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. B. W. Kim, M. Choi, Y. S. Kim, et al., “Vascular endothelial growth factor (VEGF) signaling regulates hippocampal neurons by elevation of intracellular calcium and activation of calcium/calmodulin protein kinase II and mammalian target of rapamycin,” Cell. Signal., 20, No. 4, 714–725 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. J. Y. Kim, J. Park, J. Y. Chang, et al., “Inflammation after ischemic stroke: the role of leukocytes and glial cells,” Exp. Neurobiol, 25, No. 5, 241–251 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. C. Y. Kuan and R. E. Burke, “Targeting the JNK signaling pathway for stroke and Parkinson’s diseases therapy,” Curr. Drug Targets CNS Neurol. Disord., 4, No. 1, 63–67 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. B. Lacoste, C. H. Comin, A. Ben-Zvi, et al., “Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex,” Neuron, 83, No. 5, 1117–1130 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. H. S. Lee, J. Han, H. J. Bai, and K. W. Kim, “Brain angiogenesis in developmental and pathological processes: regulation, and J. molecular and cellular communication at the neurovascular interface,” FEBS J., 276, No. 17, 4622–4635 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. S. Lee, S. M. Jilani, G. V. Nikolova, et al., “Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors,” J. Cell Biol., 169, No. 4, 681–691 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. P. Lindahl, B. R. Johansson, P. Levéen, and C. Betsholtz, “Pericyte loss and microaneurysm formation in PDGF-B-deficient mice,” Science, 277, No. 5323, 242–245 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. P. Lindblom, H. Gerhardt, S. Liebner, et al., “Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall,” Genes Dev., 17, No. 15, 1835–1840 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. J. L. Lucitti, N. J. Tarte, and J. E. Faber, “Chloride intracellular channel 4 is required for maturation of the cerebral collateral circulation,” Am. J. Physiol. Heart Circ. Physiol., 309, No. 7, H1141–H1150 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. L. K. Lunde, L. M. Camassa, E. H. Hoddevik, et al., “Postnatal development of the molecular complex underlying astrocyte polarization,” Brain Struct. Funct., 220, No. 4, 2087–2101 (2015).

    Article  PubMed  Google Scholar 

  50. S. Ma, H. J. Kwon, and Z. Huang, “A functional requirement for astroglia in promoting blood vessel development in the early postnatal brain,” PLoS One, 7, No. 10, e48001 (2012).

  51. M. J. Menezes, F. K. McClenahan, C. V. Leiton, et al., “The extracellular matrix protein laminin alpha2 regulates the maturation and function of the blood–brain barrier,” J. Neurosci., 34, No. 46, 15260–15280 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. S. Miura, Y. Matsuo, and K. Saku, “Jun N-terminal kinase inhibitor blocks angiogenesis by blocking VEGF secretion and an MMP pathway,” J. Atheroscler. Thromb, 15, No. 2, 69–74 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. M. A. Moskowitz, E. H. Lo, and C. Iadecola, “The science of stroke: mechanisms in search of treatments,” Neuron, 67, No. 2, 181–198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. D. Nayak, T. L. Roth, and D. B. McGavern, “Microglia development and function,” Annu. Rev. Immunol., 32, 367–402 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. O. O. Ogunshola, W. B. Stewart, V. Mihalcik, et al., “Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain,” Brain Res. Dev. Brain Res., 119, No. 1, 139–153 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. T. J. O’Neill, 4th, B. R. Wamhoff, G. K. Owens, and T. C. Skalak, “Mobilization of bone marrow-derived cells enhances the angiogenic response to hypoxia without transdifferentiation into endothelial cells,” Circ. Res., 97, No. 10, 1027–1035 (2005).

    Article  PubMed  CAS  Google Scholar 

  57. A. R. Patel, R. Ritzel, L. D. McCullough, and F. Liu, “Microglia and ischemic stroke: a double-edged sword,” Int. J. Physiol.,” Pathophysiol. Pharmacol., 5, No. 2, 73–90 (2013).

  58. L. B. Payne, H. Zhao, C. C. James, et al., “The pericyte microenvironment during vascular development,” Microcirculation, 26, No. 8, e12554 (2019).

  59. L. P. Reynolds, A. T. Grazul-Bilska, and D. A. Redmer, “Angiogenesis in the corpus luteum,” Endocrine, 12, No. 1, 1–9 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. L. Risser, F. Plouraboué, P. Cloetens, and C. Fonta, “A 3D-investigation shows that angiogenesis in primate cerebral cortex mainly occurs at capillary level,” Int. J. Dev. Neurosci., 27, No. 2, 185–196 (2009).

    Article  PubMed  Google Scholar 

  61. R. P. Rouhl, R. J. van Oostenbrugge, J. Damoiseaux, et al., “Endothelial progenitor cell research in stroke: a potential shift in pathophysiological and therapeutical concepts,” Stroke, 39, No. 7, 2158–2165 (2008).

    Article  PubMed  Google Scholar 

  62. H. E. Ryan, J. Lo, and R. S. Johnson, “HIF-1 alpha is required for solid tumor formation and embryonic vascularization,” EMBO J., 17, No. 11, 3005–3015 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. S. F. Rymo, H. Gerhardt, F. Wolfhagen Sand, et al., “A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures,” PLoS One, 6, No. 1, e15846 (2011).

  64. J. W. Shim and J. R. Madsen, “VEGF signaling in neurological disorders,” Int. J. Mol. Sci., 19, No. 1, 275 (2018).

  65. T. Sobrino, O. Hurtado, M. A. Moro, et al., “The increase of circulating endothelial progenitor cells after acute ischemic Stroke is associated with good outcome,” Stroke, 38, No. 10, 2759–2764 (2007).

    Article  PubMed  Google Scholar 

  66. C. C. Stichel, C. M. Muller, and K. Zilles, “Distribution of glial fibrillary acidic protein and vimentin immunoreactivity during rat visual cortex development,” J. Neurocytol., 20, No. 2, 97–108 (1991).

    Article  CAS  PubMed  Google Scholar 

  67. Y. Sun, K. Jin, L. Xie, et al., “VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia,” J. Clin. Invest., 111, No. 12, 1843–1851 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. M. D. Sweeney, S. Ayyadurai, and B. V. Zlokovic, “Pericytes of the neurovascular unit: key functions and signaling pathways,” Nat. Neurosci., 19, No. 6, 771–783 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. A. Taguchi, T. Matsuyama, H. Moriwaki, et al., “Circulating CD34-positive cells provide an index of cerebrovascular function,” Circulation, 109, No. 24, 2972–2975 (2004).

    Article  PubMed  Google Scholar 

  70. T. Tammela, G. Zarkada, H. Nurmi, et al., “VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing notch signaling,” Nat. Cell Biol., 13, No. 10, 1202–1213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. M. Tata, C. Ruhrberg, and A. Fantin, “Vascularisation of the central nervous system,” Mech. Dev., 138, 26–36 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. M. Teichert, L. Milde, A. Holm, et al., “Pericyte-expressed Tie2 controls angiogenesis and vessel maturation,” Nat. Commun., 8, 16106 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Y. Terasaki, Y. Liu, K. Hayakawa, et al., “Mechanisms of neurovascular dysfunction in acute ischemic brain,” Curr. Med. Chem., 21, No. 18, 2035–2042 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. J. Thyboll, J. Kortesmaa, R. Cao, et al., “Deletion of the laminin alpha4 chain leads to impaired microvessel maturation,” Mol. Cell Biol., 22, No. 4, 1194–1202 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. C. H. T. Tran, G. Peringod, and G. R. Gordon, “Astrocytes integrate behavioral state and vascular signals during functional hyperemia,” Neuron, 100, No. 5, 1133–1148.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. P. S. Tsai, J. P. Kaufhold, P. Blinder, et al., “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci., 29, No. 46, 14553–14570 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. C. Uchida, E. Gee, E. Ispanovic, and T. L. Haas, “JNK as a positive regulator of angiogenic potential in endothelial cells,” Cell Biol. Int., 32, No. 7, 769–776 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. V. Waetzig, Y. Zhao, and T. Herdegen, “The bright side of JNKs-multitalented mediators in neuronal sprouting, brain development and nerve fiber regeneration,” Prog. Neurobiol., 80, No. 2, 84–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. T. Wälchli, V. Pernet, O. Weinmann, et al., “Nogo-A is a negative regulator of CNS angiogenesis,” Proc. Natl. Acad. Sci. USA, 110, No. 21, E1943–1952 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. T. Wälchli, A. Ulmann-Schuler, C. Hintermuller, et al., “Nogo-A regulates vascular network architecture in the postnatal brain,” J. Cereb. Blood Flow Metab., 37, No. 2, 614–631 (2017).

    Article  PubMed  Google Scholar 

  81. Y. Wang, E. Kilic, U. Kilic, et al., “VEGF overexpression induces post-ischaemic neuroprotection, but facilitates haemodynamic steal phenomena,” Brain, 128, 52–63 (2005).

    Article  PubMed  Google Scholar 

  82. C. Whiteus, C. Freitas, and J. Grutzendler, “Perturbed neural activity disrupts cerebral angiogenesis during a postnatal critical period,” Nature, 505, No. 7483, 407–411 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Y. Yao, Z. L. Chen, E. H. Norris, and S. Strickland, “Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity,” Nat. Commun., 5, 3413 (2014).

    Article  PubMed  CAS  Google Scholar 

  84. H. K. Yip, L. T. Chang, W. N. Chang, et al., “Level and value of circulating endothelial progenitor cells in patients after acute ischemic Stroke,” Stroke, 39, No. 1, 69–74 (2008).

    Article  PubMed  Google Scholar 

  85. K. Zeller, J. Vogel, and W. Kuschinsky, “Postnatal distribution of Glut1 glucose transporter and relative capillary density in blood–brain barrier structures and circumventricular organs during development,” Brain Res. Dev. Brain Res., 91, No. 2, 200–208 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. H. Zhang, P. Prabhakar, R. Sealock, and J. E. Faber, “Wide genetic variation in the native pial collateral circulation is a major determinant of variation in severity of stroke,” J. Cereb. Blood Flow Metab., 30, No. 5, 923–934 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Z. G. Zhang, L. Zhang, Q. Jiang, and M. Chopp, “Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse,” Circ. Res., 90, No. 3, 284–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Z. G. Zhang, L. Zhang, Q. Jiang, et al., “VEGF enhances angiogenesis and promotes blood–brain barrier leakage in the ischemic brain,” J. Clin. Invest., 106, No. 7, 829–838 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. B. Q. Zhao, S. Wang, H. Y. Kim, et al., “Role of matrix metalloproteinases in delayed cortical responses after stroke,” Nat. Med., 12, No. 4, 441–445 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Y. Zhou, Y. Wang, M. Tischfield, et al., “Canonical WNT signaling components in vascular development and barrier formation,” J. Clin. Invest., 124, No. 9, 3825–3846 (2014).

  91. T. Ziegelhoeffer, B. Fernandez, S. Kostin, et al., “Bone marrow-derived cells do not incorporate into the adult growing vasculature,” Circ. Res., 94, No. 2, 230–238 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Uspenskaya.

Additional information

Translated from Uspekhi Fiziologicheskikh Nauk, Vol. 52, No. 2, pp. 39–50, April–June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uspenskaya, Y.A., Morgun, A.V., Osipova, E.D. et al. Mechanisms of Cerebral Angiogenesis in Health and Brain Pathology. Neurosci Behav Physi 52, 453–461 (2022). https://doi.org/10.1007/s11055-022-01259-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01259-7

Keywords

Navigation