Skip to main content

New Insights in the Complexity and Functionality of the Neurovascular Unit

  • Chapter
  • First Online:
Physiology, Pharmacology and Pathology of the Blood-Brain Barrier

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 273))

Abstract

The neurovascular unit (NVU) encompasses all brain cells and underlines that neurons, glia and brain vasculature are in intimate physical and functional association. Brain function is dependent on blood flow and local increases in blood flow in response to neural activity – functional hyperaemia takes place at the NVU. Although this is a vital function of the NVU, many studies have demonstrated that the NVU also performs other tasks. Blood vessels in the brain, which are composed of multiple cell types, are essential for correct brain development. They constitute the niche for brain stem cells, sense the environment and communicate changes to neural tissue, and control the immune quiescence of the CNS. In this brief chapter we will discuss new insights into the biology of NVU, which have further revealed the heterogeneity and complexity of the vascular tree and its neurovascular associations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allamand V, Guicheney P (2002) Merosin-deficient congenital muscular dystrophy, autosomal recessive (MDC1A, MIM#156225, LAMA2 gene coding for alpha2 chain of laminin). Eur J Hum Genet 10:91–94

    Article  CAS  PubMed  Google Scholar 

  • Alvarez J et al (2011) The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science 334:1727–1731

    Article  CAS  PubMed  Google Scholar 

  • Anderson K et al (2011) Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor. Proc Natl Acad Sci U S A 108:2807–2812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ando Y et al (2018) Brain-specific ultrastructure of capillary endothelial glycocalyx and its possible contribution for blood brain barrier. Sci Rep 8:17523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andreone BJ et al (2017) Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron 94:581–594 e585

    Google Scholar 

  • Andrews M, Russeth K, Drewes L, Henry P-G (2009) Adaptive mechanisms regulate preferred utilization of ketones in the heart and brain of a hibernating mammal during arousal from torpor. Am J Physiol Regul Integr Comp Physiol 296:93

    Article  CAS  Google Scholar 

  • Araya R et al (2008) BMP signaling through BMPRIA in astrocytes is essential for proper cerebral angiogenesis and formation of the blood-brain-barrier. Mol Cell Neurosci 38:417–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armulik A et al (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561

    Article  CAS  PubMed  Google Scholar 

  • Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215

    Article  CAS  PubMed  Google Scholar 

  • Aydin F, Rosenblum WI, Povlishock JT (1991) Myoendothelial junctions in human brain arterioles. Stroke 22:1592–1597

    Article  CAS  PubMed  Google Scholar 

  • Babatz F, Naffin E, Klambt C (2018) The drosophila blood-brain barrier adapts to cell growth by unfolding of pre-existing septate junctions. Dev Cell 47:697–710 e693

    Google Scholar 

  • Bechmann I et al (2001) Turnover of rat brain perivascular cells. Exp Neurol 168:242–249

    Article  CAS  PubMed  Google Scholar 

  • Bell RD et al (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68:409–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Zvi A et al (2014) Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509:507–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthiaume AA, Hartmann DA, Majesky MW, Bhat NR, Shih AY (2018a) Pericyte structural remodeling in cerebrovascular health and homeostasis. Front Aging Neurosci 10:210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berthiaume AA et al (2018b) Dynamic remodeling of pericytes in vivo maintains capillary coverage in the adult mouse brain. Cell Rep 22:8–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigley V et al (2018) Biallelic interferon regulatory factor 8 mutation: a complex immunodeficiency syndrome with dendritic cell deficiency, monocytopenia, and immune dysregulation. J Allergy Clin Immunol 141:2234–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blinder P, Shih AY, Rafie C, Kleinfeld D (2010) Topological basis for the robust distribution of blood to rodent neocortex. Proc Natl Acad Sci U S A 107:12670–12675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braniste V et al (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6:263ra158

    Google Scholar 

  • Brignone MS et al (2011) The beta1 subunit of the Na,K-ATPase pump interacts with megalencephalic leucoencephalopathy with subcortical cysts protein 1 (MLC1) in brain astrocytes: new insights into MLC pathogenesis. Hum Mol Genet 20:90–103

    Article  CAS  PubMed  Google Scholar 

  • Brockmann K (2009) The expanding phenotype of GLUT1-deficiency syndrome. Brain Dev 31:545–552

    Article  PubMed  Google Scholar 

  • Chen J et al (2017) CD146 coordinates brain endothelial cell-pericyte communication for blood-brain barrier development. Proc Natl Acad Sci U S A 114:E7622–E7631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choquet H et al (2014) Polymorphisms in inflammatory and immune response genes associated with cerebral cavernous malformation type 1 severity. Cerebrovasc Dis 38:433–440

    Article  CAS  PubMed  Google Scholar 

  • Cipolla MJ (2009) The cerebral circulation. San Rafael

    Google Scholar 

  • Corada M et al (2010) The Wnt/beta-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/notch signaling. Dev Cell 18:938–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corada M et al (2013) Sox17 is indispensable for acquisition and maintenance of arterial identity. Nat Commun 4:2609

    Article  PubMed  CAS  Google Scholar 

  • Corada M et al (2019) Fine-tuning of Sox17 and canonical Wnt coordinates the permeability properties of the blood-brain barrier. Circ Res 124:511–525

    Article  CAS  PubMed  Google Scholar 

  • Cullen M et al (2011) GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood-brain barrier. Proc Natl Acad Sci U S A 108:5759–5764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuttano R et al (2016) KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol Med 8:6–24

    Article  CAS  PubMed  Google Scholar 

  • Daneman R et al (2009) Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci U S A 106:641–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De La Fuente AG et al (2017) Pericytes stimulate oligodendrocyte progenitor cell differentiation during CNS remyelination. Cell Rep 20:1755–1764

    Article  CAS  Google Scholar 

  • Dejana E, Tournier-Lasserve E, Weinstein B (2009) The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 16:209–221

    Article  CAS  PubMed  Google Scholar 

  • Depienne C et al (2013) Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study. Lancet Neurol 12:659–668

    Article  CAS  PubMed  Google Scholar 

  • Dieguez-Hurtado R et al (2019) Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun 10:2817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dogne S, Flamion B, Caron N (2018) Endothelial glycocalyx as a shield against diabetic vascular complications: involvement of hyaluronan and hyaluronidases. Arterioscler Thromb Vasc Biol 38:1427–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan L et al (2018) PDGFRbeta cells rapidly relay inflammatory signal from the circulatory system to neurons via chemokine CCL2. Neuron 100:183–200 e188

    Google Scholar 

  • Ezan P et al (2012) Deletion of astroglial connexins weakens the blood-brain barrier. J Cereb Blood Flow Metab 32:1457–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabriek BO et al (2005) CD163-positive perivascular macrophages in the human CNS express molecules for antigen recognition and presentation. Glia 51:297–305

    Article  PubMed  Google Scholar 

  • Fantin A et al (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faraco G et al (2016) Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J Clin Invest 126:4674–4689

    Article  PubMed  PubMed Central  Google Scholar 

  • Faraco G, Park L, Anrather J, Iadecola C (2017) Brain perivascular macrophages: characterization and functional roles in health and disease. J Mol Med (Berl) 95:1143–1152

    Article  CAS  Google Scholar 

  • Fernandez-Klett F et al (2013) Early loss of pericytes and perivascular stromal cell-induced scar formation after stroke. J Cereb Blood Flow Metab 33:428–439

    Article  CAS  PubMed  Google Scholar 

  • Finney BA et al (2012) CLEC-2 and Syk in the megakaryocytic/platelet lineage are essential for development. Blood 119:1747–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer A, Zalvide J, Faurobert E, Albiges-Rizo C, Tournier-Lasserve E (2013) Cerebral cavernous malformations: from CCM genes to endothelial cell homeostasis. Trends Mol Med 19:302–308

    Article  CAS  PubMed  Google Scholar 

  • Gilbert A, Vidal XE, Estevez R, Cohen-Salmon M, Boulay AC (2019) Postnatal development of the astrocyte perivascular MLC1/GlialCAM complex defines a temporal window for the gliovascular unit maturation. Brain Struct Funct 224:1267–1278

    Article  CAS  PubMed  Google Scholar 

  • Ginhoux F et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldmann T et al (2016) Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol 17:797–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goritz C et al (2011) A pericyte origin of spinal cord scar tissue. Science 333:238–242

    Article  PubMed  CAS  Google Scholar 

  • Greene C, Hanley N, Campbell M (2019) Claudin-5: gatekeeper of neurological function. Fluids Barriers CNS 16:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Grutzendler J, Nedergaard M (2019) Cellular control of brain capillary blood flow: in vivo imaging veritas. Trends Neurosci 42:528–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guimaraes-Camboa N et al (2017) Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20:345–359 e345

    Google Scholar 

  • Haigh JJ et al (2003) Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling. Dev Biol 262:225–241

    Article  CAS  PubMed  Google Scholar 

  • Hall CN et al (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508:55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall AA et al (2017) Repeated low intensity blast exposure is associated with damaged endothelial glycocalyx and downstream behavioral deficits. Front Behav Neurosci 11:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He H et al (2016) Perivascular macrophages limit permeability. Arterioscler Thromb Vasc Biol 36:2203–2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hempel C, Pasini EM, Kurtzhals JAL (2016) Endothelial glycocalyx: shedding light on malaria pathogenesis. Trends Mol Med 22:453–457

    Article  PubMed  Google Scholar 

  • Hill RA et al (2015) Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87:95–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hladky SB, Barrand MA (2016) Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids Barriers CNS 13:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hodges LM et al (2011) Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics 21:152–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoegg-Beiler MB et al (2014) Disrupting MLC1 and GlialCAM and ClC-2 interactions in leukodystrophy entails glial chloride channel dysfunction. Nat Commun 5:3475

    Article  PubMed  CAS  Google Scholar 

  • Horng S et al (2017) Astrocytic tight junctions control inflammatory CNS lesion pathogenesis. J Clin Invest 127:3136–3151

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho-Tin-Noe B, Boulaftali Y, Camerer E (2018) Platelets and vascular integrity: how platelets prevent bleeding in inflammation. Blood 131:277–288

    Article  CAS  PubMed  Google Scholar 

  • Iliff J et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:147ra111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jais A et al (2016) Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell 166:1338–1340

    Article  CAS  PubMed  Google Scholar 

  • Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325:253–257

    Article  CAS  PubMed  Google Scholar 

  • Jessen NA, Munk AS, Lundgaard I, Nedergaard M (2015) The glymphatic system: a beginner’s guide. Neurochem Res 40:2583–2599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeworutzki E et al (2012) GlialCAM, a protein defective in a leukodystrophy, serves as a ClC-2 cl(−) channel auxiliary subunit. Neuron 73:951–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordao MJC et al (2019) Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363:eaat7554

    Google Scholar 

  • Karakatsani A, Shah B, Ruiz de Almodovar C (2019) Blood vessels as regulators of neural stem cell properties. Front Mol Neurosci 12:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly JR et al (2015) Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 9:392

    PubMed  PubMed Central  Google Scholar 

  • Kisler K et al (2017) Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci 20:406–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowland D et al (2014) Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron 82:603–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korogod N, Petersen CC, Knott GW (2015) Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. Elife 4:e05793

    Article  PubMed Central  Google Scholar 

  • Kubotera H et al (2019) Astrocytic endfeet re-cover blood vessels after removal by laser ablation. Sci Rep 9:1263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuhnert F et al (2010) Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science 330:985–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kundu P, Blacher E, Elinav E, Pettersson S (2017) Our gut microbiome: the evolving inner self. Cell 171:1481–1493

    Article  CAS  PubMed  Google Scholar 

  • Kutuzov N, Flyvbjerg H, Lauritzen M (2018) Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood-brain barrier. Proc Natl Acad Sci U S A 115:E9429–E9438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landis DM, Reese TS (1981) Membrane structure in mammalian astrocytes: a review of freeze-fracture studies on adult, developing, reactive and cultured astrocytes. J Exp Biol 95:35–48

    Article  CAS  PubMed  Google Scholar 

  • Longden TA et al (2017) Capillary K(+)-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat Neurosci 20:717–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe KL et al (2015) Podoplanin and CLEC-2 drive cerebrovascular patterning and integrity during development. Blood 125:3769–3777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:1094–1103

    Article  PubMed  Google Scholar 

  • Mihajlica N, Betsholtz C, Hammarlund-Udenaes M (2018) Rate of small-molecular drug transport across the blood-brain barrier in a pericyte-deficient state. Eur J Pharm Sci 124:182–187

    Article  CAS  PubMed  Google Scholar 

  • Mishra A et al (2016) Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nat Neurosci 19:1619–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizee M et al (2013) Retinoic acid induces blood-brain barrier development. J Neurosci 33:1660–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molofsky A et al (2012) Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26:891–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montagne A et al (2018) Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat Med 24:326–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mrdjen D et al (2018) High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48:599

    Article  CAS  PubMed  Google Scholar 

  • Mundt S et al (2019) Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation. Sci Immunol 4:eaau8380

    Google Scholar 

  • Munk AS et al (2019) PDGF-B is required for development of the glymphatic system. Cell Rep 26:2955–2969 e2953

    Google Scholar 

  • Nakagomi T et al (2015) Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells 33:1962–1974

    Article  CAS  PubMed  Google Scholar 

  • Neuwelt EA et al (2011) Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 12:169–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolakopoulou AM et al (2019) Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nat Neurosci 22:1089–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  • O’Connor T et al (2019) Age-related gliosis promotes central nervous system lymphoma through CCL19-mediated tumor cell retention. Cancer Cell 36:250–267.e259

    Google Scholar 

  • Ogura S et al (2017) Sustained inflammation after pericyte depletion induces irreversible blood-retina barrier breakdown. JCI Insight 2:e90905

    Article  PubMed  PubMed Central  Google Scholar 

  • Olson LE, Soriano P (2011) PDGFRbeta signaling regulates mural cell plasticity and inhibits fat development. Dev Cell 20:815–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozen I et al (2014) Brain pericytes acquire a microglial phenotype after stroke. Acta Neuropathol 128:381–396

    Article  PubMed  PubMed Central  Google Scholar 

  • Park DY et al (2017) Plastic roles of pericytes in the blood-retinal barrier. Nat Commun 8:15296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedragosa J et al (2018) CNS-border associated macrophages respond to acute ischemic stroke attracting granulocytes and promoting vascular leakage. Acta Neuropathol Commun 6:76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petzold GC, Murthy VN (2011) Role of astrocytes in neurovascular coupling. Neuron 71:782–797

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro LC et al (2016) Omeprazole impairs vascular redox biology and causes xanthine oxidoreductase-mediated endothelial dysfunction. Redox Biol 9:134–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rademakers R et al (2011) Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet 44:200–205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rafii S, Butler JM, Ding BS (2016) Angiocrine functions of organ-specific endothelial cells. Nature 529:316–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ransohoff R, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12:623–635

    Article  CAS  PubMed  Google Scholar 

  • Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyahi A et al (2015) Foxf2 is required for brain pericyte differentiation and development and maintenance of the blood-brain barrier. Dev Cell 34:19–32

    Article  CAS  PubMed  Google Scholar 

  • Riew TR, Choi JH, Kim HL, Jin X, Lee MY (2018) PDGFR-beta-positive perivascular adventitial cells expressing nestin contribute to fibrotic scar formation in the striatum of 3-NP intoxicated rats. Front Mol Neurosci 11:402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez D (2013) Leukodystrophies with astrocytic dysfunction. Handb Clin Neurol 113:1619–1628

    Article  PubMed  Google Scholar 

  • Ruhrberg C, Bautch V (2013) Neurovascular development and links to disease. Cell Mol Life Sci 70:1675–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rungta RL, Chaigneau E, Osmanski BF, Charpak S (2018) Vascular compartmentalization of functional hyperemia from the synapse to the pia. Neuron 99:362–375 e364

    Google Scholar 

  • Santello M, Toni N, Volterra A (2019) Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci 22:154–166

    Article  CAS  PubMed  Google Scholar 

  • Saunders NR, Habgood MD, Dziegielewska KM (1999) Barrier mechanisms in the brain. II. Immature brain. Clin Exp Pharmacol Physiol 26:85–91

    Article  CAS  PubMed  Google Scholar 

  • Saunders A et al (2018) Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174:1015–1030 e1016

    Google Scholar 

  • Schonfeld P, Wojtczak L (2016) Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res 57:943–954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schreiner B et al (2015) Astrocyte depletion impairs redox homeostasis and triggers neuronal loss in the adult CNS. Cell Rep 12:1377–1384

    Article  CAS  PubMed  Google Scholar 

  • Segarra M, Kirchmaier BC, Acker-Palmer A (2015) A vascular perspective on neuronal migration. Mech Dev 138(Pt 1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Segarra M et al (2018) Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system. Science 361:eaao2861

    Article  PubMed  CAS  Google Scholar 

  • Siegenthaler JA et al (2013) Foxc1 is required by pericytes during fetal brain angiogenesis. Biol Open 2:647–659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sifat AE, Vaidya B, Villalba H, Albekairi TH, Abbruscato TJ (2019) Neurovascular unit transport responses to ischemia and common coexisting conditions: smoking and diabetes. Am J Physiol Cell Physiol 316:C2–C15

    Article  CAS  PubMed  Google Scholar 

  • Sijens P et al (2007) MR spectroscopy and diffusion tensor imaging of the brain in congenital muscular dystrophy with merosin deficiency: metabolite level decreases, fractional anisotropy decreases, and apparent diffusion coefficient increases in the white matter. Brain Dev 29:317–321

    Article  CAS  PubMed  Google Scholar 

  • Sissung TM, Goey AK, Ley AM, Strope JD, Figg WD (2014) Pharmacogenetics of membrane transporters: a review of current approaches. Methods Mol Biol 1175:91–120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soderblom C et al (2013) Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J Neurosci 33:13882–13887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenman JM et al (2008) Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science 322:1247–1250

    Article  CAS  PubMed  Google Scholar 

  • Tan X et al (2016) Vascular influence on ventral telencephalic progenitors and neocortical interneuron production. Dev Cell 36:624–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang AT et al (2017) Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature 545:305–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarlungeanu DC et al (2016) Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder. Cell 167:1481–1494 e1418

    Google Scholar 

  • Tata M, Ruhrberg C (2018) Cross-talk between blood vessels and neural progenitors in the developing brain. Neuronal Signal 2:NS20170139

    Article  PubMed  PubMed Central  Google Scholar 

  • Thwaites DT, Anderson CM (2011) The SLC36 family of proton-coupled amino acid transporters and their potential role in drug transport. Br J Pharmacol 164:1802–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torok O et al (2019) Pericytes regulate vascular immune homeostasis in the CNS. bioRxiv, 644120

    Google Scholar 

  • Tsai HH et al (2016) Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science 351:379–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhrin P et al (2010) Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood 115:3997–4005

    Article  CAS  PubMed  Google Scholar 

  • van der Knaap M, Boor I, Estévez R (2012) Megalencephalic leukoencephalopathy with subcortical cysts: chronic white matter oedema due to a defect in brain ion and water homoeostasis. Lancet Neurol 11:973–985

    Article  PubMed  Google Scholar 

  • Van Hove H et al (2019) A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat Neurosci 22:1021–1035

    Article  PubMed  CAS  Google Scholar 

  • Vanlandewijck M et al (2015) Functional characterization of germline mutations in PDGFB and PDGFRB in primary familial brain calcification. PLoS One 10:e0143407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanlandewijck M et al (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 554:475–480

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan A, Long JE, Crandall JE, Rubenstein JL, Bhide PG (2008) Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat Neurosci 11:429–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villasenor R et al (2016) Trafficking of endogenous immunoglobulins by endothelial cells at the blood-brain barrier. Sci Rep 6:25658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villeda SA, Wyss-Coray T (2013) The circulatory systemic environment as a modulator of neurogenesis and brain aging. Autoimmun Rev 12:674–677

    Article  PubMed  Google Scholar 

  • Weller R, Djuanda E, Yow H-Y, Carare R (2009) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 117:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wen P et al (2005) Selective expression of presenilin 1 in neural progenitor cells rescues the cerebral hemorrhages and cortical lamination defects in presenilin 1-null mutant mice. Development 132:3873–3883

    Article  CAS  PubMed  Google Scholar 

  • Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P (2009) Brain endothelial cells and the glio-vascular complex. Cell Tissue Res 335:75–96

    Article  PubMed  Google Scholar 

  • Won C et al (2013) Autonomous vascular networks synchronize GABA neuron migration in the embryonic forebrain. Nat Commun 4:2149

    Article  PubMed  CAS  Google Scholar 

  • Wynn T, Chawla A, Pollard J (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki T et al (2017) Tissue myeloid progenitors differentiate into pericytes through TGF-beta signaling in developing skin vasculature. Cell Rep 18:2991–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousef H et al (2019) Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nat Med 5:988–1000

    Article  CAS  Google Scholar 

  • Zarb Y et al (2019) Microglia control small vessel calcification via TREM2. bioRxiv, 829341

    Google Scholar 

  • Zeisel A et al (2018) Molecular architecture of the mouse nervous system. Cell 174:999–1014 e1022

    Google Scholar 

  • Zhou T et al (2019) Microvascular endothelial cells engulf myelin debris and promote macrophage recruitment and fibrosis after neural injury. Nat Neurosci 22:421–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Maarja A. Mäe for discussions, and Dr. Elisabeth Rushing and Sucheta Sridhar for editing. Cited own work was supported by external grants from the Swiss National Science Foundation (31003A_159514; 310030_188952), the Swiss Heart Foundation, the Synapsis Foundation, the Leducq Foundation, the Swiss Multiple Sclerosis Society, and the Swiss Cancer League (KLS-3848-02-2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika Keller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schaffenrath, J., Keller, A. (2020). New Insights in the Complexity and Functionality of the Neurovascular Unit. In: Cader, Z., Neuhaus, W. (eds) Physiology, Pharmacology and Pathology of the Blood-Brain Barrier. Handbook of Experimental Pharmacology, vol 273. Springer, Cham. https://doi.org/10.1007/164_2020_424

Download citation

Publish with us

Policies and ethics