Skip to main content

Cerebral Angiogenesis During Development: Who Is Conducting the Orchestra?

  • Protocol
Cerebral Angiogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1135))

Abstract

Blood vessels provide the brain with the oxygen and the nutrients it requires to develop and function. Endothelial cells (ECs) are the principal cell type forming the vascular system and driving its development and remodeling. All vessels are lined by a single EC layer. Larger blood vessels are additionally enveloped by vascular smooth muscle cells (VSMCs) and pericytes, which increase their stability and regulate their perfusion and form the blood–brain barrier (BBB). The development of the vascular system occurs by two processes: (1) vasculogenesis, the de novo assembly of the first blood vessels, and (2) angiogenesis, the creation of new blood vessels from preexisting ones by sprouting from or by division of the original vessel. The walls of maturing vessels produce a basal lamina and recruit pericytes and vascular smooth muscle cells for structural support. Whereas the process of vasculogenesis seems to be genetically programmed, angiogenesis is induced mainly by hypoxia in development and disease. Both processes and the subsequent vessel maturation are further orchestrated by a complex interplay of inhibiting and stimulating growth factors and their respective receptors, many of which are hypoxia-inducible. This chapter intends to give an overview about the array of factors directing the development and maintenance of the brain vasculature and their interdependent actions.

Ina M. Wittko-Schneider and Fabian T. Schneider have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lammert E, Axnick J (2012) Vascular lumen formation. Cold Spring Harb Perspect Med 2:a006619

    PubMed Central  PubMed  Google Scholar 

  2. Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91

    CAS  PubMed  Google Scholar 

  3. Choi K (1998) Hemangioblast development and regulation. Biochem Cell Biol 76:947–956

    CAS  PubMed  Google Scholar 

  4. Eichmann A, Corbel C, Pardanaud L, Breant C, Moyon D, Yuan L (2000) Hemangioblastic precursors in the avian embryo. Curr Top Microbiol Immunol 251:83–90

    CAS  PubMed  Google Scholar 

  5. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    CAS  PubMed  Google Scholar 

  6. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    CAS  PubMed  Google Scholar 

  7. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    CAS  PubMed  Google Scholar 

  8. Patel-Hett S, D’Amore PA (2011) Signal transduction in vasculogenesis and developmental angiogenesis. Int J Dev Biol 55:353–363

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Djonov V, Schmid M, Tschanz SA, Burri PH (2000) Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ Res 86:286–292

    CAS  PubMed  Google Scholar 

  10. Patan S (2000) Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 50:1–15

    CAS  PubMed  Google Scholar 

  11. Pardanaud L, Dieterlen-Lievre F (2000) Ontogeny of the endothelial system in the avian model. Adv Exp Med Biol 476:67–78

    CAS  PubMed  Google Scholar 

  12. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    CAS  PubMed  Google Scholar 

  13. Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97:1093–1107

    CAS  PubMed  Google Scholar 

  14. Senger DR, Davis GE (2011) Angiogenesis. Cold Spring Harb Perspect Biol 3:a005090

    PubMed Central  PubMed  Google Scholar 

  15. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16:2684–2698

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    CAS  PubMed  Google Scholar 

  18. Lindahl P, Hellstrom M, Kalen M, Betsholtz C (1998) Endothelial-perivascular cell signaling in vascular development: lessons from knockout mice. Curr Opin Lipidol 9:407–411

    CAS  PubMed  Google Scholar 

  19. Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055

    CAS  PubMed  Google Scholar 

  20. Kurz H (2000) Physiology of angiogenesis. J Neurooncol 50:17–35

    CAS  PubMed  Google Scholar 

  21. Geudens I, Gerhardt H (2011) Coordinating cell behaviour during blood vessel formation. Development 138:4569–4583

    CAS  PubMed  Google Scholar 

  22. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56:549–580

    CAS  PubMed  Google Scholar 

  23. Plate KH, Risau W (1995) Angiogenesis in malignant gliomas. Glia 15:339–347

    CAS  PubMed  Google Scholar 

  24. Plate KH, Scholz A, Dumont DJ (2012) Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neuropathol 124:763–775

    PubMed Central  PubMed  Google Scholar 

  25. Beck H, Plate KH (2009) Angiogenesis after cerebral ischemia. Acta Neuropathol 117:481–496

    PubMed  Google Scholar 

  26. Acker T, Plate KH (2003) Role of hypoxia in tumor angiogenesis-molecular and cellular angiogenic crosstalk. Cell Tissue Res 314:145–155

    CAS  PubMed  Google Scholar 

  27. Reiss Y, Machein MR, Plate KH (2005) The role of angiopoietins during angiogenesis in gliomas. Brain Pathol 15:311–317

    CAS  PubMed  Google Scholar 

  28. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286

    CAS  PubMed  Google Scholar 

  29. Hallene KL, Oby E, Lee BJ, Santaguida S, Bassanini S, Cipolla M, Marchi N, Hossain M, Battaglia G, Janigro D (2006) Prenatal exposure to thalidomide, altered vasculogenesis, and CNS malformations. Neuroscience 142:267–283

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Liebner S, Plate KH (2010) Differentiation of the brain vasculature: the answer came blowing by the Wnt. J Angiogenes Res 2:1

    PubMed Central  PubMed  Google Scholar 

  31. Vasudevan A, Long JE, Crandall JE, Rubenstein JL, Bhide PG (2008) Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat Neurosci 11:429–439

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Bar T (1983) Patterns of vascularization in the developing cerebral cortex. Ciba Found Symp 100:20–36

    CAS  PubMed  Google Scholar 

  33. Ogunshola OO, Stewart WB, Mihalcik V, Solli T, Madri JA, Ment LR (2000) Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Brain Res Dev Brain Res 119:139–153

    CAS  PubMed  Google Scholar 

  34. Vasudevan A, Bhide PG (2008) Angiogenesis in the embryonic CNS: a new twist on an old tale. Cell Adh Migr 2:167–169

    PubMed Central  PubMed  Google Scholar 

  35. Bar T (1980) The vascular system of the cerebral cortex. Adv Anat Embryol Cell Biol 59:I–VI, 1–62

    Google Scholar 

  36. Wittko IM, Schanzer A, Kuzmichev A, Schneider FT, Shibuya M, Raab S, Plate KH (2009) VEGFR-1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stream in vivo. J Neurosci 29:8704–8714

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Raab S, Plate KH (2007) Different networks, common growth factors: shared growth factors and receptors of the vascular and the nervous system. Acta Neuropathol 113:607–626

    CAS  PubMed  Google Scholar 

  38. Raab S, Beck H, Gaumann A, Yuce A, Gerber HP, Plate K, Hammes HP, Ferrara N, Breier G (2004) Impaired brain angiogenesis and neuronal apoptosis induced by conditional homozygous inactivation of vascular endothelial growth factor. Thromb Haemost 91:595–605

    CAS  PubMed  Google Scholar 

  39. Robertson PL, Du Bois M, Bowman PD, Goldstein GW (1985) Angiogenesis in developing rat brain: an in vivo and in vitro study. Brain Res 355:219–223

    CAS  PubMed  Google Scholar 

  40. Engelhardt B (2003) Development of the blood–brain barrier. Cell Tissue Res 314:119–129

    CAS  PubMed  Google Scholar 

  41. Bauer HC, Bauer H (2000) Neural induction of the blood–brain barrier: still an enigma. Cell Mol Neurobiol 20:13–28

    CAS  PubMed  Google Scholar 

  42. Plate KH (1999) Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol 58:313–320

    CAS  PubMed  Google Scholar 

  43. Li H-Y, Zhou X-F (2007) Potential conversion of adult clavicle-derived chondrocytes into neural lineage cellsin vitro. J Cell Physiol 214:630–644

    Google Scholar 

  44. Stamataki D, Ulloa F, Tsoni SV, Mynett A, Briscoe J (2005) A gradient of Gli activity mediates graded Sonic Hedgehog signaling in the neural tube. Genes Dev 19:626–641

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Isohata N, Aoyagi K, Mabuchi T, Daiko H, Fukaya M, Ohta H, Ogawa K, Yoshida T, Sasaki H (2009) Hedgehog and epithelial-mesenchymal transition signaling in normal and malignant epithelial cells of the esophagus. Int J Cancer 125:1212–1221

    CAS  PubMed  Google Scholar 

  46. Maury JJP, Choo AB-H, Chan KK-K (2011) Technical advances to genetically engineering human embryonic stem cells. Integr Biol 3:717–723

    CAS  Google Scholar 

  47. Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP, Gallahan D, Closson V, Kitajewski J, Callahan R, Smith GH, Stark KL, Gridley T (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14:1343–1352

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Uyttendaele H, Ho J, Rossant J, Kitajewski J (2001) Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. Proc Natl Acad Sci U S A 98:5643–5648

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Cheng N, Brantley DM, Chen J (2002) The ephrins and Eph receptors in angiogenesis. Cytokine Growth Factor Rev 13:75–85

    CAS  PubMed  Google Scholar 

  50. Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753

    CAS  PubMed  Google Scholar 

  51. Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A, Adams S, Davy A, Deutsch U, Luthi U, Barberis A, Benjamin LE, Makinen T, Nobes CD, Adams RH (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465:483–486

    CAS  PubMed  Google Scholar 

  52. Nikolic I, Plate KH, Schmidt MH (2010) EGFL7 meets miRNA-126: an angiogenesis alliance. J Angiogenes Res 2:9

    PubMed Central  PubMed  Google Scholar 

  53. Klagsbrun M, Eichmann A (2005) A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor Rev 16:535–548

    CAS  PubMed  Google Scholar 

  54. Kise Y, Morinaka A, Teglund S, Miki H (2009) Sufu recruits GSK3beta for efficient processing of Gli3. Biochem Biophys Res Commun 387:569–574

    CAS  PubMed  Google Scholar 

  55. Sellheyer K (2011) Basal cell carcinoma: cell of origin, cancer stem cell hypothesis and stem cell markers. Br J Dermatol 164:696–711

    CAS  PubMed  Google Scholar 

  56. Dakubo GD, Mazerolle C, Furimsky M, Yu C, St-Jacques B, McMahon AP, Wallace VA (2008) Indian hedgehog signaling from endothelial cells is required for sclera and retinal pigment epithelium development in the mouse eye. Dev Biol 320:242–255

    CAS  PubMed  Google Scholar 

  57. Eberl M, Klingler S, Mangelberger D, Loipetzberger A, Damhofer H, Zoidl K, Schnidar H, Hache H, Bauer H-C, Solca F, Hauser-Kronberger C, Ermilov AN, Verhaegen ME, Bichakjian CK, Dlugosz AA, Nietfeld W, Sibilia M, Lehrach H, Wierling C, Aberger F (2012) Hedgehog-EGFR cooperation response genes determine the oncogenic phenotype of basal cell carcinoma and tumour-initiating pancreatic cancer cells. EMBO Mol Med 4:218–233

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Puppo F, Thomé V, Lhoumeau A-C, Cibois M, Gangar A, Lembo F, Belotti E, Marchetto S, Lécine P, Prébet T, Sebbagh M, Shin W-S, Lee S-T, Kodjabachian L, Borg J-P (2011) Protein tyrosine kinase 7 has a conserved role in Wnt/β-catenin canonical signalling. EMBO Rep 12:43–49

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Choy SW, Cheng SH (2012) Hedgehog signaling. Vitam Horm 88:1–23

    CAS  PubMed  Google Scholar 

  60. Cheng X, Huber TL, Chen VC, Gadue P, Keller GM (2008) Numb mediates the interaction between Wnt and Notch to modulate primitive erythropoietic specification from the hemangioblast. Development 135:3447–3458

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Robel S, Berninger B, Götz M (2011) The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci 12:88–104

    CAS  PubMed  Google Scholar 

  62. Paces-Fessy M, Boucher D, Petit E, Paute-Briand S, Blanchet-Tournier M-F (2004) The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins. Biochem J 378:353–362

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Okano H, Imai T, Okabe M (2002) Musashi: a translational regulator of cell fate. J Cell Sci 115:1355–1359

    CAS  PubMed  Google Scholar 

  64. Aubry L, Bugi A, Lefort N, Rousseau F, Peschanski M, Perrier AL (2008) Striatal progenitors derived from human ES cells mature into DARPP32 neurons in vitro and in quinolinic acid-lesioned rats. Proc Natl Acad Sci 105:16707–16712

    PubMed Central  CAS  PubMed  Google Scholar 

  65. (2007) Untitled-14338:1–7

    Google Scholar 

  66. Habela CW, Ernest NJ, Swindall AF, Sontheimer H (2008) Chloride accumulation drives volume dynamics underlying cell proliferation and migration. J Neurophysiol 101:750–757

    PubMed Central  PubMed  Google Scholar 

  67. Lenth RV (2007) Statistical power calculations. J Anim Sci 85:E24–E29

    CAS  PubMed  Google Scholar 

  68. de Bont JM, Packer RJ, Michiels EM, den Boer ML, Pieters R (2008) Biological background of pediatric medulloblastoma and ependymoma: a review from a translational research perspective. Neuro-Oncology 10:1040–1060

    PubMed Central  PubMed  Google Scholar 

  69. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611

    CAS  PubMed  Google Scholar 

  70. Kalin TV, Ustiyan V, Kalinichenko VV (2011) Multiple faces of FoxM1 transcription factor: lessons from transgenic mouse models. Cell Cycle 10:396–405

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Fodde R, Brabletz T (2007) Wnt/β-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 19:150–158

    CAS  PubMed  Google Scholar 

  72. Kittappa R, Chang WW, Awatramani RB, McKay RDG (2007) The foxa2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age. PLoS Biol 5:e325

    PubMed Central  PubMed  Google Scholar 

  73. Duan Y, Fan M (2011) Lentivirus-mediated gene silencing of beta-catenin inhibits growth of human tongue cancer cells. J Oral Pathol Med 40:643–650

    CAS  PubMed  Google Scholar 

  74. Breier G, Clauss M, Risau W (1995) Coordinate expression of vascular endothelial growth factor receptor-1 (flt-1) and its ligand suggests a paracrine regulation of murine vascular development. Dev Dyn 204:228–239

    CAS  PubMed  Google Scholar 

  75. Vaid M, Prasad R, Sun Q, Katiyar SK (2011) Silymarin targets β-catenin signaling in blocking migration/invasion of human melanoma cells. PLoS ONE 6:e23000

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Shimizu K, Chiba S, Hosoya N, Kumano K, Saito T, Kurokawa M, Kanda Y, Hamada Y, Hirai H (2000) Binding of Delta1, Jagged1, and Jagged2 to Notch2 rapidly induces cleavage, nuclear translocation, and hyperphosphorylation of Notch2. Mol Cell Biol 20:6913–6922

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M, Moon RT, Teo J-L, Oh SW, Kim HY, Moon SH, Ha JR, Kahn M (2004) A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci U S A 101:12682–12687

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cel Biol 16:4604–4613

    CAS  Google Scholar 

  79. Yang L, Jackson E, Woerner BM, Perry A, Piwnica-Worms D, Rubin JB (2007) Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. Cancer Res 67:651–658

    CAS  PubMed  Google Scholar 

  80. Samuelov L, Sprecher E, Tsuruta D, Bíró T, Kloepper JE, Paus R (2012) P-cadherin regulates human hair growth and cycling via canonical Wnt signaling and transforming growth factor-β2. J Invest Dermatol 132(10):2332–2341

    CAS  PubMed  Google Scholar 

  81. Grigoryan T, Wend P, Klaus A, Birchmeier W (2008) Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev 22:2308–2341

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Tihan T, Pekmezci M, Karnezis A (2011) Neural stem cells and their role in the pathology and classification of central nervous system tumors. Türk Patoloji Derg 27:1–11

    PubMed  Google Scholar 

  83. Plate KH, Beck H, Danner S, Allegrini PR, Wiessner C (1999) Cell type specific upregulation of vascular endothelial growth factor in an MCA-occlusion model of cerebral infarct. J Neuropathol Exp Neurol 58:654–666

    CAS  PubMed  Google Scholar 

  84. Amoh Y, Aki R, Hamada Y, Niiyama S, Eshima K, Kawahara K, Sato Y, Tani Y, Hoffman RM, Katsuoka K (2012) Nestin-positive hair follicle pluripotent stem cells can promote regeneration of impinged peripheral nerve injury. J Dermatol 39:33–38

    CAS  PubMed  Google Scholar 

  85. Hockemeyer D, Jaenisch R (2010) Gene targeting in human pluripotent cells. Cold Spring Harb Symp Quant Biol 75:201–209

    CAS  PubMed  Google Scholar 

  86. Pannuti A, Foreman K, Rizzo P, Osipo C, Golde T, Osborne B, Miele L (2010) Targeting Notch to target cancer stem cells. Clin Cancer Res 16:3141–3152

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Kovacs JJ, Whalen EJ, Liu R, Xiao K, Kim J, Chen M, Wang J, Chen W, Lefkowitz RJ (2008) Arrestin-mediated localization of smoothened to the primary cilium. Science 320:1777–1781

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Mohapel P, Frielingsdorf H, Haggblad J, Zachrisson O, Brundin P (2005) Platelet-derived growth factor (PDGF-BB) and brain-derived neurotrophic factor (BDNF) induce striatal neurogenesis in adult rats with 6-hydroxydopamine lesions. Neuroscience 132:767–776

    CAS  PubMed  Google Scholar 

  89. Rahnama F, Shimokawa T, Lauth M, Finta C, Kogerman P, Teglund S, Toftgård R, Zaphiropoulos PG (2006) Inhibition of GLI1 gene activation by Patched1. Biochem J 394:19–26

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Zhang F, Tang Z, Hou X, Lennartsson J, Li Y, Koch AW, Scotney P, Lee C, Arjunan P, Dong L, Kumar A, Rissanen TT, Wang B, Nagai N, Fons P, Fariss R, Zhang Y, Wawrousek E, Tansey G, Raber J, Fong G-H, Ding H, Greenberg DA, Becker KG, Herbert J-M, Nash A, Ylä-Herttuala S, Cao Y, Watts RJ, Li X (2009) VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proc Natl Acad Sci 106:6152–6157

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Li X, Lee C, Tang Z, Zhang F, Arjunan P, Li Y, Hou X, Kumar A, Dong L (2009) VEGF-B: a survival, or an angiogenic factor? Cell Adh Migr 3:322–327

    PubMed Central  PubMed  Google Scholar 

  92. Mould AW, Tonks ID, Cahill MM, Pettit AR, Thomas R, Hayward NK, Kay GF (2003) Vegfb gene knockout mice display reduced pathology and synovial angiogenesis in both antigen-induced and collagen-induced models of arthritis. Arthritis Rheum 48:2660–2669

    CAS  PubMed  Google Scholar 

  93. Sun Y, Jin K, Childs JT, Xie L, Mao XO, Greenberg DA (2004) Increased severity of cerebral ischemic injury in vascular endothelial growth factor-B-deficient mice. J Cereb Blood Flow Metab 24:1146–1152

    CAS  PubMed  Google Scholar 

  94. Enholm B, Paavonen K, Ristimaki A, Kumar V, Gunji Y, Klefstrom J, Kivinen L, Laiho M, Olofsson B, Joukov V, Eriksson U, Alitalo K (1997) Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 14:2475–2483

    CAS  PubMed  Google Scholar 

  95. Kele J, Andersson ER, Villaescusa JC, Cajanek L, Parish CL, Bonilla S, Toledo EM, Bryja V, Rubin JS, Shimono A, Arenas E (2012) SFRP1 and 2 dose-dependently regulate midbrain dopamine neuron development in vivo and in embryonic stem cells. Stem Cells 30(5):865–875

    CAS  PubMed  Google Scholar 

  96. Barakat MT, Scott MP (2009) Tail wags dog: primary cilia and tumorigenesis. Cancer Cell 16:276–277

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Androutsellis-Theotokis A, Rueger MA, Park DM, Boyd JD, Padmanabhan R, Campanati L, Stewart CV, LeFranc Y, Plenz D, Walbridge S, Lonser RR, McKay RDG (2010) Angiogenic factors stimulate growth of adult neural stem cells. PLoS ONE 5:e9414

    PubMed Central  PubMed  Google Scholar 

  98. Athar M, Tang X, Lee JL, Kopelovich L, Kim AL (2006) Hedgehog signalling in skin development and cancer. Exp Dermatol 15:667–677

    CAS  PubMed  Google Scholar 

  99. Guo A, Owens WA, Coady M, Liu D, Jahoda CAB (2012) An in vivo mouse model of human skin replacement for wound healing and cell therapy studies. J Plast Reconstr Aesthet Surg 65:1129–1131

    PubMed  Google Scholar 

  100. Lim S-H, Choi SA, Lee JY, Wang K-C, Phi JH, Lee D-H, Song SH, Song JH, Jin X, Kim H, Lee HJ, Lim I, Kim SU, Kim S-K (2011) Therapeutic targeting of subdural medulloblastomas using human neural stem cells expressing carboxylesterase. Cancer Gene Ther 18:817–824

    CAS  PubMed  Google Scholar 

  101. Blanpain C, Lowry WE, Pasolli HA, Fuchs E (2006) Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes Dev 20:3022–3035

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Fong GH, Zhang L, Bryce DM, Peng J (1999) Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 126:3015–3025

    CAS  PubMed  Google Scholar 

  103. Fitch MJ, Campagnolo L, Kuhnert F, Stuhlmann H (2004) Egfl7, a novel epidermal growth factor-domain gene expressed in endothelial cells. Dev Dyn 230:316–324

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Whitman M (1997) Signal transduction. Feedback from inhibitory SMADs. Nature 389:549–551

    CAS  PubMed  Google Scholar 

  105. Chinchilla P, Xiao L, Kazanietz MG, Riobo NA (2010) Hedgehog proteins activate pro-angiogenic responses in endothelial cells through non-canonical signaling pathways. Cell Cycle 9:570–579

    CAS  PubMed  Google Scholar 

  106. Klein RS, Rubin JB, Gibson HD, DeHaan EN, Alvarez-Hernandez X, Segal RA, Luster AD (2001) SDF-1 alpha induces chemotaxis and enhances Sonic hedgehog-induced proliferation of cerebellar granule cells. Development 128:1971–1981

    CAS  PubMed  Google Scholar 

  107. Kremer C, Breier G, Risau W, Plate KH (1997) Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. Cancer Res 57:3852–3859

    CAS  PubMed  Google Scholar 

  108. Aberger F, Kern D, Greil R, Hartmann TN (2012) Canonical and noncanonical Hedgehog/GLI signaling in hematological malignancies. Vitam Horm 88:25–54

    CAS  PubMed  Google Scholar 

  109. Jiang J, Hui CC (2008) Hedgehog signaling in development and cancer. Dev Cell 15:801–812

    CAS  PubMed  Google Scholar 

  110. Rizzo P, Miao H, D’Souza G, Osipo C, Yun J, Zhao H, Mascarenhas J, Wyatt D, Antico G, Hao L, Yao K, Rajan P, Hicks C, Siziopikou K, Selvaggi S, Bashir A, Bhandari D, Marchese A, Lendahl U, Qin JZ, Tonetti DA, Albain K, Nickoloff BJ, Miele L (2008) Cross-talk between notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res 68:5226–5235

    CAS  PubMed  Google Scholar 

  111. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165–172

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Bergstein I (2002) In vivo enhanced expression of patched dampens the sonic hedgehog pathway. Mol Ther 6:258–264

    CAS  PubMed  Google Scholar 

  113. Silver DJ, Steindler DA (2009) Common astrocytic programs during brain development, injury and cancer. Trends Neurosci 32:303–311

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Xu J, Krebs LT, Gridley T (2010) Generation of mice with a conditional null allele of the Jagged2 gene. Genesis 48:390–393

    PubMed Central  PubMed  Google Scholar 

  115. Rodig SJ, Payne EG, Degar BA, Rollins B, Feldman AL, Jaffe ES, Androkites A, Silverman LB, Longtine JA, Kutok JL, Fleming MD, Aster JC (2008) Aggressive Langerhans cell histiocytosis following T-ALL: clonally related neoplasms with persistent expression of constitutively active NOTCH1. Am J Hematol 83:116–121

    CAS  PubMed  Google Scholar 

  116. Kuraguchi M, Wang X-P, Bronson RT, Rothenberg R, Ohene-Baah NY, Lund JJ, Kucherlapati M, Maas RL, Kucherlapati R (2006) Adenomatous polyposis coli (APC) is required for normal development of skin and thymus. PLoS Genet 2:e146

    PubMed Central  PubMed  Google Scholar 

  117. Pierfelice T, Alberi L, Gaiano N (2011) Notch in the vertebrate nervous system: an old dog with new tricks. Neuron 69:840–855

    CAS  PubMed  Google Scholar 

  118. Pola R, Ling LE, Silver M, Corbley MJ, Kearney M, Blake Pepinsky R, Shapiro R, Taylor FR, Baker DP, Asahara T, Isner JM (2001) The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med 7:706–711

    CAS  PubMed  Google Scholar 

  119. Patan S (1998) TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc Res 56:1–21

    CAS  PubMed  Google Scholar 

  120. Kelly BD, Hackett SF, Hirota K, Oshima Y, Cai Z, Berg-Dixon S, Rowan A, Yan Z, Campochiaro PA, Semenza GL (2003) Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 93:1074–1081

    CAS  PubMed  Google Scholar 

  121. Heiser PW, Lau J, Taketo MM, Herrera PL, Hebrok M (2006) Stabilization of beta-catenin impacts pancreas growth. Development 133:2023–2032

    CAS  PubMed  Google Scholar 

  122. Roca C, Adams RH (2007) Regulation of vascular morphogenesis by Notch signaling. Genes Dev 21:2511–2524

    CAS  PubMed  Google Scholar 

  123. Hellström M, Phng L-K, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson A-K, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalén M, Gerhardt H, Betsholtz C (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780

    PubMed  Google Scholar 

  124. Hofmann JJ, Iruela-Arispe ML (2007) Notch signaling in blood vessels: who is talking to whom about what? Circ Res 100:1556–1568

    CAS  PubMed  Google Scholar 

  125. Blanco R, Gerhardt H (2012) VEGF and notch in tip and stalk cell selection. Cold Spring Harb Perspect Med

    Google Scholar 

  126. Adams RH, Eichmann A (2010) Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect Biol 2:a001875

    PubMed Central  PubMed  Google Scholar 

  127. Kurz H, Gartner T, Eggli PS, Christ B (1996) First blood vessels in the avian neural tube are formed by a combination of dorsal angioblast immigration and ventral sprouting of endothelial cells. Dev Biol 173:133–147

    CAS  PubMed  Google Scholar 

  128. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    CAS  PubMed  Google Scholar 

  129. Stefater JA, Lewkowich I, Rao S, Mariggi G, Carpenter AC, Burr AR, Fan J, Ajima R, Molkentin JD, Williams BO, Wills-Karp M, Pollard JW, Yamaguchi T, Ferrara N, Gerhardt H, Lang RA (2011) Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature 474:511–515

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Berger AC, Wang X-Q, Zalatoris A, Cenna J, Watson JC (2004) A murine model of ex vivo angiogenesis using aortic disks grown in fibrin clot☆. Microvasc Res 68:179–187

    CAS  PubMed  Google Scholar 

  131. Benchabane H, Xin N, Tian A, Hafler BP, Nguyen K, Ahmed A, Ahmed Y (2011) Jerky/Earthbound facilitates cell-specific Wnt/Wingless signalling by modulating β-catenin-TCF activity. EMBO J 30:1444–1458

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Park HJ, Carr JR, Wang Z, Nogueira V, Hay N, Tyner AL, Lau LF, Costa RH, Raychaudhuri P (2009) FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO J 28:2908–2918

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, Yancopoulos GD (2000) Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6:460–463

    CAS  PubMed  Google Scholar 

  134. Lim KJ, Bisht S, Bar EE, Maitra A, Eberhart CG (2011) A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biol Ther 11:464–473

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Lemjabbar-Alaoui H, Dasari V, Sidhu SS, Mengistab A, Finkbeiner W, Gallup M, Basbaum C (2006) Wnt and Hedgehog are critical mediators of cigarette smoke-induced lung cancer. PLoS ONE 1:e93

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wittko-Schneider, I.M., Schneider, F.T., Plate, K.H. (2014). Cerebral Angiogenesis During Development: Who Is Conducting the Orchestra?. In: Milner, R. (eds) Cerebral Angiogenesis. Methods in Molecular Biology, vol 1135. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0320-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0320-7_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0319-1

  • Online ISBN: 978-1-4939-0320-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics