Skip to main content
Log in

Developmental Characteristics of Neurons in the Intramural Ganglia of the Small Intestine Containing Different Types of Calcium-Binding Proteins

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Immunohistochemical and morphometric methods were used to study the locations, relative contents, and cross-sectional areas of calbindin (CB)- and calretinin (CR)-immunopositive neurons in the intramural ganglia of the intermuscular plexus of the rat duodenum (n = 37) during postnatal ontogeny (days 1, 10, 20, 30, and 60 and 1 and 2 years of age). CB- and CR-immunopositive neurons were detected in all the rats studied, from neonatal to aged. Proportions of CR-immunopositive neurons increased over the first 10 days of life and then showed no significant changes, including in aged animals. Proportions of CB-containing neurons increased to reach a maximum by day 20 of life, decreased insignificantly to day 30, and then remained without significant change. The mean sizes of CB- and CR-immunopositive neurons were significantly greater than the mean cross-sectional area of immunonegative neurons in all age groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Korzina, A. A. Korobkin, O. A. Vasil’eva, and P. M. Maslyukov, “Morphological characteristics of the stellate ganglion in white rats,” Morfologiya, 137, No. 2, 23–26 (2010).

    CAS  Google Scholar 

  2. P. M. Maslyukov, A. A. Korobkin, V. V. Konovalov, et al., “Age-related development of calbindin-immunopositive neurons in the sympathetic ganglia of the rat,” Morfologiya, 141, No. 1, 77–80 (2012).

    Google Scholar 

  3. P. M. Maslyukov, A. D. Nozdrachev, and J. P. Timmermans, “Developmental characteristics of the neurotransmitter composition of stellate ganglion neurons,” Ros. Fiziol. Zh., 92, No. 2, 214–221 (2006).

    Google Scholar 

  4. C. Andressen, I. Blumcke, and M. R. Celio, “Calcium-binding proteins: selective markers of nerve cells,” Cell Tissue Res., 271, 181–208 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. T. Bellido, M. Huening, M. Raval-Pandya, et al., “Calbindin-D28k is expressed in osteoblastic cells and suppresses their apoptosis by inhibiting caspase-3 activity,” J. Biol. Chem., 275, 26,328–26,332 (2000).

    Article  CAS  Google Scholar 

  6. P. S. Chard, D. Bleakman, S. Christakos, et al., “Calcium buffering properties of calbindin-D28k and parvalbumin in rat sensory neurons,” J. Physiol., 472, 341–357 (1993).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. T. Endo and T. Onaya, “Immunohistochemical localization of parvalbumin in rat and monkey autonomic ganglia,” J. Neurocytol., 17, 73–77 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. R. Franconville, G. Revet, G. Astorga, et al., “Somatic calcium level reports integrated spiking activity of cerebellar interneurons in vitro and in vivo,” J. Neurophysiol., 106, 1793–1805 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. D. Lee, A. G. Obukhov, Q. Shen, et al., “Calbindin-D28k decreases L-type calcium channel activity and modulates intracellular calcium homeostasis in response to K+ depolarization in a rat beta cell line RINr1046–38,” Cell Calcium, 39, 475–485 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. P. M. Masliukov, “Sympathetic neurons of the cat stellate ganglion in postnatal ontogenesis: morphometric analysis,” Auton. Neurosci., 89, No. 1–2, 48–53 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. P. M. Masliukov, A. A. Korobkin, A. D. Nozdrachev, and J. P. Timmermans, “Calbindin-D28k immunoreactivity in sympathetic ganglionic neurons during development,” Auton. Neurosci., 167, No. 1–2, 27–33 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. R. Mitsui, “Immunohistochemical analysis of substance P-containing neurons in rat small intestine,” Cell Tissue Res., 343, 331–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. A. I. Sayegh and R. C. Ritter, “Morphology and distribution of nitric oxide synthase-, neurokinin-1 receptor-, calretinin-, calbindin-, and neurofilament-M-immunoreactive neurons in the myenteric and submucosal plexuses of the rat small intestine,” Anat. Rec. A. Discov. Mol. Cell. Evol. Biol., 271, No. 1, 209–216 (2003).

    Article  PubMed  Google Scholar 

  14. B. Schwaller, “The regulation of a cell’s Ca(2+) signaling toolkit: the Ca(2+) homeostasome,” Adv. Exp. Med. Biol., 740, 1–25 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. S. Yano, H. Tokumitsu, and T. R. Soderling, “Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway,” Nature, 396, 584–587 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Maslyukov.

Additional information

Translated from Morfologiya, Vol. 146, No. 6, pp. 33–37, November–December, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emanuilov, A.I., Moiseev, K.Y., Filippov, I.V. et al. Developmental Characteristics of Neurons in the Intramural Ganglia of the Small Intestine Containing Different Types of Calcium-Binding Proteins. Neurosci Behav Physi 45, 986–990 (2015). https://doi.org/10.1007/s11055-015-0175-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0175-8

Keywords

Navigation