Skip to main content
Log in

Physiology of Ranvier Nodes in Living Myelinated Nerve Fibers

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

A fixed histological preparation cannot reveal the dynamics of morphophysiological objects being merely a basis for hypothetic physiology. At the same time, intravital microscopy of mobile and changing structures can be considered as a branch of cell physiology. The present study focused on revealing the features of this chapter of neurophysiology in relation to nerve fibers. Importantly, the preparation of living neurons isolated by the method of Tasaki inevitably produces mechanical lesions in Ranvier node structure of unknown scale and importance. These lesions can be manifested by deformation or entire elimination of the cone-shaped myelinated regions of the node and/or fiber bulb, as well as by the changes of the nodal gap. Similar alterations can emerge in the intact fiber during a long-term survival in Ringer’s solution. Electron microscopy showed that in hypotonic solutions, swelling and increase in the volume of neuroplasm in the paranodal loops were accompanied by its expansion into the axoplasmic territory in the cone during narrowing of the axon. These processes were reversible, and they probably reflected a novel form of metabolic transmembrane neuron–glial exchange of glucose, amino acids, and other low-molecular weight compounds leading to the formation of integrated cytoplasm of the nerve fiber. The loss of clear boundary of the myelinated cones of the node and/or fiber bulb depended on a large-scale exfoliation of individual main dense lines of Robertson and on flooding the series of paranodal loops. Hypertonic (2 M) solution of urea, which cannot provoke swelling of the cytoplasm but can denature the proteins, also induced similar alterations in the node of Ranvier. Consequently, the described changes in the nodes were not associated with the phenomenon of external osmotic changes, but with the influence of nonspecific physical alterations in conformation of axoplasmic proteins. The voltage clamp experiments with recording of nodal ionic currents demonstrated the correspondence of structural alterations to electrophysiological changes in sodium, potassium, and leakage conductance. The experiments with sodium channel modifier batrachotoxin revealed no structural alterations in Ranvier nodes during 1 h. The present and reviewed data indicate that the nodal changes probably result not from the structural alterations of axolemmal proteins, but from the conformational rearrangements of the axoplasmic ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Brohawn S.G., Wang W., Handler A., Campbell E.B., Schwarz J.R., MacKinnon R. 2019. The mechanosensitive ion channel TRAAK is localized to the mammalian node of Ranvier. Elife. 8, e50403.

    Article  Google Scholar 

  2. Kanda H., Ling J., Tonomura S., Noguchi K., Matalon S., Gu J.G. 2019. TREK-1 and TRAAK are principal K+ channels at the nodes of Ranvier for rapid action potential conduction on mammalian myelinated afferent nerves. Neuron. 104 (5), 960–971.

    Article  CAS  Google Scholar 

  3. Cohen C.C.H., Popovic M.A., Klooster J., Weil M.T., Möbius W., Nave K.A., Kole M.H.P. 2020. Saltatory conduction along myelinated axons involves a periaxonal nanocircuit. Cell. 180 (2), 311–322.

    Article  CAS  Google Scholar 

  4. Patel A., Rumsey J.W., Lorance C., Long C.J., Lee B., Tetard L., Lambert S., Hickman J.J. 2020. Myelination and node of Ranvier formation in a human motoneuron-schwann cell serum-free coculture. ACS Chem. Neurosci. 11 (17), 2615–2623.

    Article  CAS  Google Scholar 

  5. Zhang Y., Yuen S., Peles E., Salzer J.L. 2020. Accumulation of neurofascin at the nodes of Ranvier is regulated by a paranodal switch. J. Neurosci. 40 (30), 5709–5723.

    Article  CAS  Google Scholar 

  6. Rasband M.N., Peles E. 2021. Mechanisms of node of Ranvier assembly. Nat. Rev. Neurosci. 22 (1), 7–20.

    Article  CAS  Google Scholar 

  7. Khachatryan A.A., Yerofeeva L.M., Kutvitskaya S.A. 2014. The role of neuroglia in the function of nervous system. Uspekhi sovremennogo estestvoznania (Rus.). 6, 66–70.

  8. Robertson J.D. 1959. Preliminary observations on the ultrastructure of nodes of Ranvier. Z. Zellforsch. 50, 553–560.

    Article  Google Scholar 

  9. Phillips D.D., Hibbs R.G., Ellison J.P., Shapiro H. 1972. An electron microscopic study of central and peripheral nodes of Ranvier. J. Anat. 111 (Pt 2), 229–238.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rasband M.N. 2013. Cytoskeleton: Axons earn their stripes. Curr. Biol. 23 (5), 197–198.

    Article  Google Scholar 

  11. Ghosh A., Sherman D.L., Brophy P.J. 2018. The axonal cytoskeleton and the assembly of nodes of Ranvier. Neuroscientist. 24 (2), 104–110.

    Article  Google Scholar 

  12. Hirano A., Dembitzer H.M. 1967. A structural analysis of the myelin sheath in the central nervous system. J. Cell. Biol. 34 (2), 555–567.

    Article  CAS  Google Scholar 

  13. Nualart-Marti A., Solsona C., Fields R.D. 2013. Gap junction communication in myelinating glia. Biochim. Biophys. Acta. 1828 (1), 69–78.

  14. Peters A. 1960. The formation and structure of myelin sheaths in the central nervous system. J. Biophys. Biochem. Cytol. 8, 431–446.

    Article  CAS  Google Scholar 

  15. Metuzals J. 1965. Ultrastructure of the nodes of Ranvier and their surrounding structures in the central nervous system. Z. Zellforsch. Mikrosk. Anat. 65, 719–759.

    Article  CAS  Google Scholar 

  16. Suminaite D., Lyons D.A., Livesey M.R. 2019. Myelinated axon physiology and regulation of neural circuit function. Glia. 67 (11), 2050–2062.

    Article  Google Scholar 

  17. Sotnikov O.S. 2016. Properties of Living Axoplasm. New York: NOVA.

    Google Scholar 

  18. Gibbs J. W. 1982. Termodinamika. Statisticheskaya mekhanika (Thermodynamics. Statistical Mechanics). M.: Nauka.

  19. Sotnikov O.S., Skibo G.G., Kuleshova T.F. 1984. Ultrastructural characteristics of nodes of Ranvier. Neurofiziologia (Rus.). 16 (4), 546–549.

    CAS  Google Scholar 

  20. Malavasi E.L., Ghosh A., Booth D.G., Zagnoni M., Sherman D.L., Brophy P.J. 2021. Dynamic early clusters of nodal proteins contribute to node of Ranvier assembly during myelination of peripheral neurons. Elife. 10, e68089.

    Article  CAS  Google Scholar 

  21. Robertson J. 1963. Molecular biology of cell membranes. In: Molekuliarnaya biologia (Molecular Biology). Moscow: Publishing House of Foreign Literature, pp. 102–151.

  22. Mercer E.H. 1959. An electron microscopic study of Amoeba proteus. Proc. R. Soc. Lond. B, Biol. Sci. 150 (939), 216–232.

    Article  CAS  Google Scholar 

  23. Mironov A.A., Komissarchik Ya.Yu., Mironov V.A. 1994. Metody elektronnoi mikroskopii v biologii i meditsine: Metodicheskoe rukovodstvo (Methods of electron microscopy in biology and medicine: Methodological guide). St. Petersburg: Nauka.

    Google Scholar 

  24. Jarjour A.A., Velichkova A.N., Boyd A., Lord K.M., Torsney C., Henderson D.J., Ffrench-Constant C. 2020. The formation of paranodal spirals at the ends of CNS myelin sheaths requires the planar polarity protein Vangl2. Glia. 68 (9), 1840–1858.

    Article  Google Scholar 

  25. Livingston R.B., Pfenniger K., Moor H., Akert K. 1973. Specialized paranodal and interparanodal glial-axonal junctions in the peripheral and central nervous system: A freeze-etching study. Brain. Res. 58 (1), 1–24.

    Article  CAS  Google Scholar 

  26. Brivio V., Faivre-Sarrailh C., Peles E., Sherman D.L., Brophy P.J. 2017. Assembly of CNS nodes of Ranvier in myelinated nerves is promoted by the axon cytoskeleton. Curr. Biol. 27 (7), 1068–1073.

    Article  CAS  Google Scholar 

  27. Laatsch R.H, Cowan W.M. 1966. A structural specialization at nodes of Ranvier in the central nervous system. Nature. 210 (5037), 757–758.

    Article  CAS  Google Scholar 

  28. Rasband M.N. 2006. Neuron-glia interactions at the node of Ranvier. Results Probl. Cell Differ. 43, 129–149.

    Article  CAS  Google Scholar 

  29. Peters A. 1966. The node of Ranvier in the central nervous system. Q. J. Exp. Physiol. Cogn. Med. Sci. 51 (3), 229–236.

    CAS  PubMed  Google Scholar 

  30. Tasaki I. 1968. Nerve Excitation: A macromolecular approach. Thomas, Springfield, Illinois.

    Google Scholar 

  31. Dodge F.A., Frankenhaeuser B. 1958. Membrane currents in isolated frog nerve fibre under voltage clamp conditions. J. Physiol. 143 (1), 76–90.

    Article  CAS  Google Scholar 

  32. Mueller-Mohnssen H. 1961. Structural changes in Ranvier nodes during electrical tone and during functional destruction. Z. Zellforsch. Mikrosk. Anat. 54, 468–498.

    Article  CAS  Google Scholar 

  33. Sotnikov O.S. 1973. Discussed problems on particular properties of the axon at the ends of myelin segments. Arkhiv AGE (Rus.). 64 (3), 95–101.

    CAS  Google Scholar 

  34. D’Este E., Kamin D., Balzarotti F., Hell S.W. 2017. Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy. Proc. Natl. Acad. Sci. USA. 114 (2), 191–199.

    Article  Google Scholar 

  35. Djannatian M., Timmler S., Arends M., Luckner M., Weil M.T., Alexopoulos I., Snaidero N., Schmid B., Misgeld T., Möbius W., Schifferer M., Peles E., Simons M. 2019. Two adhesive systems cooperatively regulate axon ensheathment and myelin growth in the CNS. Nat. Commun. 10 (1), 4794.

    Article  Google Scholar 

  36. Ramón y Cajal S. 1984. The neuron and the glial cell. Springfield, IL: Charles C. Thomas.

    Google Scholar 

  37. Vallat J.M., Magy L., Corcia P., Boulesteix J.M., Uncini A., Mathis S. 2020. Ultrastructural lesions of nodo-paranodopathies in peripheral neuropathies. J. Neuropathol. Exp. Neurol. 79 (3), 247–255.

    Article  CAS  Google Scholar 

  38. Guckeisen T., Hosseinpour S., Peukert W. 2021. Effect of pH and urea on the proteins secondary structure at the water/air interface and in solution. J. Coll. Interface Sci. 590, 38–49.

    Article  CAS  Google Scholar 

  39. Arancibia-Cárcamo I.L., Ford M.C., Cossell L., Ishida K., Tohyama K., Attwell D. 2017. Node of Ranvier length as a potential regulator of myelinated axon conduction speed. Elife. 6, e23329.

    Article  Google Scholar 

  40. Khodorov B.I., Peganov E.M., Revenko S.V., Shishkova L.D. 1975. Sodium currents in voltage clamped nerve fiber of frog under the combined action of batrachotoxin and procaine. Brain Res. 84 (3), 541–546.

    Article  CAS  Google Scholar 

  41. Revenko S.V., Khodorov B.I. 1977. Effect of batrachotoxin on selectivity of sodium channels in the membrane of myelinated nerve fiber. Neurofiziologia (Rus.). 9 (3), 313–316.

    CAS  Google Scholar 

  42. Khodorov B.I., Revenko S.V. 1979. Further analysis of the mechanisms of action of batrachotoxin on the membrane of myelinated nerve. Neuroscience. 4 (9), 1315–1330.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by State Program “Scientific and Technological Development of the Russian Federation” (2019–2030), Research Issue No. 0134-2019-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Revenko.

Ethics declarations

The authors declare that they have no conflict of interest.

All procedures were performed in accordance with the European Communities Council Directive (November 24, 1986; 86/609/EEC) and the Declaration on humane treatment of animals.

Additional information

Translated by O. Sotnikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotnikov, O.S., Revenko, S.V. Physiology of Ranvier Nodes in Living Myelinated Nerve Fibers. Biochem. Moscow Suppl. Ser. A 16, 224–235 (2022). https://doi.org/10.1134/S1990747822040067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747822040067

Keywords:

Navigation