Skip to main content
Log in

Predictive Mapping of Prospectivity in the Gurupi Orogenic Gold Belt, North–Northeast Brazil: An Example of District-Scale Mineral System Approach to Exploration Targeting

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The Gurupi Belt hosts a Paleoproterozoic gold province located in north–northeastern Brazil, at the borders of Pará and Maranhão states. It is considered to be an extension of the prolific West African Craton’s Birimian gold province into South America. Additionally, the belt has been the object of recent mineral exploration programs with significant resource discoveries. This study presents the results of predictive mapping using up-to-date mineral system concepts and recently finished regional-scale geological mapping, stream sediment and airborne geophysical surveys conducted by the Geological Survey of Brazil. We relate gold mineralization to an initially enriched crust, metamorphism, deep fluid pathways, structurally controlled damage zones and hydrothermal alteration. Prospective targets were generated using only regional public datasets and knowledge-driven targeting technique. This work did not incorporate any known gold deposits, yet it predicted the largest known deposits and their satellite targets. Besides, high prospective targets mapped almost 40% of known primary gold occurrences within 7% of the project area. This work allowed considerable search area reduction and identification of new target areas, thus collaborating on reducing costs, time and risk of mineral exploration. Results indicate that we achieved an efficient understanding of the geological processes related to the Gurupi Belt mineral system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  • Bonham-Carter, G. F. (1995). Geographic information systems for geoscientists: Modeling with GIS. Computer methods in geosciences (Vol. 13). New York, NY: Pergamon Press.

    Google Scholar 

  • Brown, W. M., Groves, D. I., & Gedeon, T. (2003). Use of fuzzy membership input layers to combine subjective geological knowledge and empirical data in a neural network method for mineral-potential mapping. Natural Resources Research, 12, 183–200.

    Article  Google Scholar 

  • Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS. Amsterdam: Elsevier.

    Google Scholar 

  • Carranza, E. J. M., Sadeghi, M., & Billay, A. (2015). Predictive mapping of prospectivity for orogenic gold, Giyani greenstone belt (South Africa). Ore Geology Reviews, 71, 703–718.

    Article  Google Scholar 

  • Cox, S. F. (2005). Coupling between deformations, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust. Economic Geology, 100, 39–75.

    Google Scholar 

  • Czarnota, K., Blewett, R. S., & Goscombe, B. (2010). Predictive mineral discovery in the eastern Yilgarn Craton, Western Australia: An example of district scale targeting of an orogenic gold mineral system. Precambrian Research, 183, 356–377.

    Article  Google Scholar 

  • Dardenne, M. A., & Schobbenhaus, C. (2003). Metallogeny of the Guyana Shield. Géologie de la France, 2-3-4, 291–319.

    Google Scholar 

  • De Quadros, T. F. P., Koppe, J. C., Strieder, A. J., & Costa, J. F. C. L. (2003). Gamma-ray data processing and integration for lode-Au deposits exploration. Natural Resources Research, 12, 57–65.

    Article  Google Scholar 

  • Elliott, B. A., Verma, R., & Kyle, J. R. (2016). Prospectivity modeling for Cambrian-Ordovician hydraulic fracturing sand resources around the Llano Uplift, Central Texas. Natural Resources Research, 25, 389–415.

    Article  Google Scholar 

  • Ford, A., Miller, J. M., & Mol, A. G. (2016). A comparative analysis of weights of evidence, evidential belief functions, and fuzzy logic for mineral potential mapping using incomplete data at the scale of investigation. Natural Resources Research, 25, 19–33.

    Article  Google Scholar 

  • Gnojek, I., & Prichystal, A. (1985). A new zinc mineralization detected by airborne gamma-ray spectrometry in northern Moraiva (Czechoslovakia). Geoexploration, 23, 491–502.

    Article  Google Scholar 

  • Goldfarb, R. J., & Groves, D. I. (2015). Orogenic gold: Common or evolving fluid and metal sources through time. Lithos. doi:10.1016/j.lithos.2015.07.011.

    Google Scholar 

  • Goldfarb, R. J., Groves, D. I., & Gardoll, S. (2001). Orogenic gold and geologic time: A global synthesis. Ore Geology Reviews, 18, 1–75.

    Article  Google Scholar 

  • Goldfarb, R. J., Hart, C., Davis, G., & Groves, D. I. (2007). East Asian gold: Deciphering the anomaly of Phanerozoic gold in Precambrian cratons. Economic Geology, 102, 341–345.

    Article  Google Scholar 

  • Groves, D. I., & Bierlein, F. P. (2007). Geodynamic setting of mineral deposit systems. Journal of the Geological Society of London, 164, 19–30.

    Article  Google Scholar 

  • Groves, D. I., Goldfarb, R. J., & Santosh, M. (2016). The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings. Geoscience Frontiers, 7, 303–314.

    Article  Google Scholar 

  • Groves, D. I., & Santosh, M. (2015). Province scale commonalities of some world-class gold deposits: Implications form mineral exploration. Geoscience Frontiers, 6(3), 389–399.

    Article  Google Scholar 

  • Harris, J. R., Wilkison, L., Heather, K., Fumerton, S., Bernier, M. A., Ayer, J., et al. (2001). Application of GIS processing techniques for producing mineral prospectivity maps—A case study: Mesothermal Au in the Swayze Greenstone Belt, Ontario, Canada. Natural Resources Research, 10(2), 91–124.

    Article  Google Scholar 

  • Hasui, Y., Abreu, F. A. M., & Villas, R. N. N. (1984). Província Parnaíba. O Pre-Cambriano no Brasil (pp. 36–45). São Paulo: Edgard Blücher.

    Google Scholar 

  • Hronsky, J. M. A., & Groves, D. I. (2008). Science of targeting: Definition, strategies, targeting and performance measurement. Australian Journal of Earth Sciences, 55, 3–12.

    Article  Google Scholar 

  • Hronsky, J. M. A., Groves, D. I., Loucks, R. R., & Begg, G. C. (2012). A unified model for gold mineralization in accretionary orogens and implications for regional-scale exploration targeting methods. Mineralium Deposita, 47, 339–358.

    Article  Google Scholar 

  • Jost, H., Carvalho, M. J., Rodrigues, V. G., & Martins, R. (2014). Metalogênese dos greenstone belts de Goiás. In M. G. Silva, M. B. Rocha Neto, H. Jost, & R. M. Kuyumjian (Eds.), Metalogênese das Províncias Tectônicas Brasileiras (pp. 141–168). Belo Horizonte: CPRM.

    Google Scholar 

  • Kendrick, M. A., Honda, M., Walshe, J., & Petersen, K. (2011). Fluid sources and the role of abiogenic-CH4 in Archean gold mineralization: Constraints from noble gases and halogens. Precambrian Research, 189, 313–327.

    Article  Google Scholar 

  • Klein, E. L. (2014). Ore fluids of orogenic gold deposits of the Gurupi Belt, Brazil: A review of the physico-chemical properties, sources, and mechanisms of Au transport and deposition. In: P. S. Garofalo, J. R. Ridley (Eds.), Gold-transporting hydrothermal fluids in the Earth’s crust (pp. 121–145). London: Geological Society, Special Publications 402.

  • Klein, E. L., Lopes, E. C. S., Campos, L. D., Tavares, F. M., Neves, M. P., & Perrotta, M. M. (2016). Áreas de Relevante Interesse MineralCinturão Gurupi. Informe de Recursos Minerais, Série Províncias Minerais do Brasil, Brasília, CPRM-Serviço Geológico do Brasil (in press).

  • Klein, E. L., Lucas, F. R. A., Queiroz, J. D. S., Freitas, S. C. F., Renac, C., Galarza, M. A., et al. (2015). Metallogenesis of the Paleoproterozoic Piaba orogenic gold deposit, São Luís cratonic fragment, Brazil. Ore Geology Reviews, 65, 1–25.

    Article  Google Scholar 

  • Klein, E. L., & Moura, C. A. V. (2008). São Luís craton and Gurupi belt (Brazil): Possible links with the West-African craton and surrounding Pan-African belts. In R. J. Pankhurst, R. A. J. Trouw, B. B. Brito Neves & M. J. de Wit (Eds.), West Gondwana: Pre-Cenozoic correlations across the South Atlantic Region (pp. 137–151). London: Geological Society, Special Publications 294.

  • Klein, E. L., Moura, C. A. V., Krymsky, R., & Griffin, W. L. (2005a). The Gurupi belt in northern Brazil: Lithostratigraphy, geochronology, and geodynamic evolution. Precambrian Research, 141, 83–105.

    Article  Google Scholar 

  • Klein, E. L., Moura, C. A. V., & Pinheiro, B. L. S. (2005b). Paleoproterozoic crustal evolution of the São Luís Craton, Brazil: Evidence from zircon geochronology and Sm–Nd isotopes. Gondwana Research, 8, 177–186.

    Article  Google Scholar 

  • Klein, E. L., Rodrigues, J. B., Lopes, E. C. S., & Soledade, G. L. (2012). Diversity of Rhyacian granitoids in the basement of the Neoproterozoic-Early Cambrian Gurupi Belt, northern Brazil: Geochemistry, U–Pb zircon geochronology, and Nd isotope constraints on the Paleoproterozoic magmatic and crustal evolution. Precambrian Research, 220–221, 192–216.

    Article  Google Scholar 

  • Klein, E. L., Rosa-Costa, L. T., & Vasquez, M. L. (2014). Metalogênese da borda oriental do Cráton Amazônico. In M. G. Silva, M. B. Rocha Neto, H. Jost, & R. M. Kuyumjian (Eds.), Metalogênese das Províncias Tectônicas Brasileiras (pp. 171–194). Belo Horizonte: CPRM.

    Google Scholar 

  • Knox-Robinson, C. M., & Wyborn, L. A. I. (1997). Towards a holistic exploration strategy: Using geographic information system as a tool to enhance exploration. Australian Journal of Earth Sciences, 44, 453–464.

    Article  Google Scholar 

  • Large, R. R., Gregory, D. D., Steadman, J. A., Tomkins, A. G., Lounejeva, E., Danyushevsky, L. V., et al. (2015). Gold in oceans through time. Earth and Planetary Science Letters, 428, 139–150.

    Article  Google Scholar 

  • Large, R. R., Halpin, J. A., Danyushevsky, L. V., Maslennikov, V. V., Bull, S. W., Long, J. A., et al. (2014). Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution. Earth and Planetary Science Letters, 389, 209–220.

    Article  Google Scholar 

  • Lopes, E. C. S., Klein, E. L., & Simas, M. W. (2015). Carta de integração geológica-geofísica: Cinturão Gurupi. CPRM: Serviço Geológico do Brasil. Escala 1:150.000. 1 mapa. ARIM - Áreas de Relevante Interesse Mineral.

  • Loucks R. R., & Ballard J. R. (2003). Report 2C: Petrochemical characteristics, petrogenesis and tectonic habits of gold-ore-forming arc magmas. Unpublished report for industry-sponsored research project: Predictive Guides to Copper and Gold Mineralization at Circum-Pacific Convergent Plate Margins.

  • Machado, I. C. (2011). Gurupi Gold Project. Cipoeiro and Chega Tudo properties. Feasibility study. TechnoMine Services LLC. http://www.jaguarmining.com/s/ExpGurupi.asp. Accessed April 18, 2013.

  • Markwitz, W., Hein, K. A. A., Jessell, M. W., & Miller, J. (2016). Metallogenic portfolio of the West Africa craton. Ore Geology Reviews, 78, 558–563.

    Article  Google Scholar 

  • McCuaig, T. C., Beresford, S., & Hronsky, J. M. A. (2010). Translating the mineral system approach into an effective exploration targeting system. Ore Geology Reviews, 38, 128–138.

    Article  Google Scholar 

  • McCuaig, T. C., & Hronsky, J. M. A. (2014). The mineral system concept: The key to exploration targeting. Society of Economic Geology, Special Publication, 18, 153–175.

    Google Scholar 

  • Mosher, Z. G. (2013). Technical report and resource estimate on the Cachoeira property, State of Pará, Brazil. Brazil Resources Inc. http://brazilresources.com/_resources/tech_report_oct_2013.pdf. Accessed May 04, 2016.

  • Neves, M. P., & Chaves, C. L. (2016). Geoquímica Prospectiva. In E. L. Klein (Ed.), Áreas de Relevante Interesse MineralCinturão Gurupi. Informe de Recursos Minerais, Série Províncias Minerais do Brasil, Brasília, CPRM-Serviço Geológico do Brasil (in press).

  • Palheta, E. S., Abreu, F. A. M., & Moura, C. A. V. (2009). Granitóides proterozóicos como marcadores da evolução geotectônica da região nordeste do Pará – Brasil. Revista Brasileira de Geociências, 39, 647–657.

    Google Scholar 

  • Pastana, J. M. N. (1995). Programa Levantamentos Geológicos Básicos do Brasil. Programa Grande Carajás. Turiaçu/Pinheiro, folhas AS.23-V-D/AS.23-Y-B. Estados do Pará e Maranhão. Belém: CPRM.

  • Phillips, G. N., & Powell, R. (2010). Formation of gold deposits: A metamorphic devolatilization model. Journal of Metamorphic Petrology, 28, 689–718.

    Article  Google Scholar 

  • Pires, A. C. B. (1995). Identificação geofísica de áreas de alteração hidrotermal, Crixás-Guarinos, Goiás. Revista Brasileira de Geociências, 25(1), 61–68.

    Google Scholar 

  • Reis, J. F. T. (2014). Projeto Montes ÁureosRelatório final de pesquisa. Belém: National Department of Mineral Production – DNPM.

  • Robb, L. J. (2005). Introduction to ore forming processes. Malden, MA: Blackwell Publishing Company.

    Google Scholar 

  • Sawatzky, D. L., Raines, G. L., Bonham-Carter, G. F., & Looney, C. G. (2009). Spatial Data Modeller (SDM): ArcMAP 9.3 Geoprocessing tools for spatial data modelling using weights of evidence, logistic regression, fuzzy logic and neural networks. http://arcscripts.esri.com/details.asp?dbid=15341. Accessed November 27, 2016.

  • Silva, M. G., Teixeira, J. B. G., Misi, A., Cruz, S. C. P., & Sá, J. H. S. (2014). Metalogênese do setor setentrional do Cráton do São Francisco. In M. G. Silva, M. B. Rocha Neto, H. Jost, & R. M. Kuyumjian (Eds.), Metalogênese das Províncias Tectônicas Brasileiras (pp. 93–118). Belo Horizonte: CPRM.

    Google Scholar 

  • Souza, S. M., Campos, L. D.; Tavares, F. M.; Chaves, C. L., Lopes, E. C. S., Sordi, D. A., et al. (2015). Carta geológica e de recursos minerais: Cinturão Gurupi. CPRM: Serviço Geológico do Brasil. Escala 1:150.000. 1 mapa. ARIM - Áreas de Relevante Interesse Mineral.

  • Wyborn, L. A. I., Heinrich C. A., & Jaques A. L. (1994). Australian Proterozoic mineral systems: Essential ingredients and mappable criteria. In Australian Institute of Mining and Metallurgy annual conference, Proceedings (pp. 109–115), Melbourne.

Download references

Acknowledgements

This work was submitted and published with the permission of the Chief Person of the Mineral Resources Department of the Geological Survey of Brazil. We thank Raphael T. Correa for assisting the generation of the magnetic source profiles. LDC thanks Marco Tulio N. de Carvalho, advisor to the board of Geology and Mineral Resources, for his continued support and discussions on exploration targeting. ELK acknowledges CNPq-Conselho Nacional de Desenvolvimento Científico e Tecnológico for Research Grant (307443/2013-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Duarte Campos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos, L.D., de Souza, S.M., de Sordi, D.A. et al. Predictive Mapping of Prospectivity in the Gurupi Orogenic Gold Belt, North–Northeast Brazil: An Example of District-Scale Mineral System Approach to Exploration Targeting. Nat Resour Res 26, 509–534 (2017). https://doi.org/10.1007/s11053-016-9320-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-016-9320-5

Keywords

Navigation