Skip to main content
Log in

Defect-engineered Ag/ZnO and Ag2O/ZnO nanomaterials prepared with nanoparticles synthesized by a sustainable sol–gel method and their biological responses

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

ZnO/Ag and ZnO/Ag2O nanocomposites were produced using ZnO nanoparticles synthesized via a starch-mediated sol–gel method. XRD and Rietveld refinement confirmed the wurtzite-like structure of spherical 16-nm ZnO nanocrystals. These nanocrystals were further decorated with cubic nearly spherical ~ 7-nm Ag and irregular ~ 6-nm Ag2O nanocrystals, resulting in nanocomposites with distinct structural characteristics. The morphological analysis confirmed the distinct shapes and sizes of Ag, Ag2O, and ZnO nanoparticles. The nanocomposites exhibited a tuned optical bandgap and structural defects like \({V}_{Zn}\), VO, and \({V}_{O}^{+}\). In vitro biological tests revealed that the Ag2O/ZnO nanocomposite displayed significantly enhanced antidiabetic, antimicrobial, and antioxidant activities. These enhanced biological properties were attributed in part to the unique morphology of Ag2O nanoparticles and the defective nature of ZnO/Ag2O nanocomposite. These results demonstrate that the green-synthesized ZnO nanoparticles decorated with Ag2O emerge as a promising material for biomedical applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Keerthan P, Vijayakumar S, Vidhyam E, Punitha VN, Nilavukkarasi MPP (2021) Biogenesis of ZnO nanoparticles for revolutionizing agriculture: a step towards anti -infection and growth promotion in plants. Ind Crops Prod 170:113762. https://doi.org/10.1016/j.indcrop.2021.113762

    Article  CAS  Google Scholar 

  2. Zhou X-Q, Hayat Z, Zhang D-D et al (2023) Zinc oxide nanoparticles: synthesis, characterization, modification, and applications in food and agriculture. Processes 11:1193. https://doi.org/10.3390/pr11041193

    Article  CAS  Google Scholar 

  3. Racca L, Canta M, Dumontel B et al (2018) Zinc Oxide Nanostructures in Biomedicine. In: Micro and Nano Technologies, Smart Nanoparticles for Biomedicine. 1st edn. Elsevier, Amsterdam, pp 171–187

  4. Shetti NP, Malode SJ, Nayak DS et al (2019) Fabrication of ZnO nanoparticles modified sensor for electrochemical oxidation of methdilazine. Appl Surf Sci 496:143656. https://doi.org/10.1016/j.apsusc.2019.143656

    Article  CAS  Google Scholar 

  5. Bhatia S, Verma N, Bedi RK (2017) Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques. Results Phys 7:801–806. https://doi.org/10.1016/j.rinp.2017.02.008

    Article  Google Scholar 

  6. Sheteiwy MS, Shaghaleh H, Hamoud YA et al (2021) Zinc oxide nanoparticles: potential effects on soil properties, crop production, food processing, and food quality. Environ Sci Pollut Res 28:36942–36966. https://doi.org/10.1007/s11356-021-14542-w

    Article  CAS  Google Scholar 

  7. Yadav S, Mehrotra GK, Dutta PK (2021) Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chem 334:127605. https://doi.org/10.1016/j.foodchem.2020.127605

    Article  CAS  PubMed  Google Scholar 

  8. Matos RS, Attah-Baah JM, Monteiro MDS et al (2023) Effect of the amapá-latex chelating agent contents on the microstructure and photocatalytic properties of ZnO nanoparticles. J Mater Res Technol 22:2673–2689. https://doi.org/10.1016/j.jmrt.2022.12.119

    Article  CAS  Google Scholar 

  9. Matos RS, Attah-Baah JM, Monteiro MDS et al (2022) Evaluation of the photocatalytic activity of distinctive-shaped ZnO nanocrystals synthesized using latex of different plants native to the Amazon rainforest. Nanomaterials 12:2889. https://doi.org/10.3390/nano12162889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Velsankar K, Venkatesan A, Muthumari P, Suganya S, Mohandoss S, Sudhahar S et al (2022) Green inspired synthesis of ZnO nanoparticles and its characterizations with biofilm, antioxidant, anti-inflammatory, and anti-diabetic activities. J Mol Struct 1255:132420. https://doi.org/10.1016/j.molstruc.2022.132420

  11. Sharma A, Nagraik R, Sharma S et al (2022) Green synthesis of ZnO nanoparticles using Ficus palmata: antioxidant, antibacterial and antidiabetic studies. Results Chem 4:100509. https://doi.org/10.1016/j.rechem.2022.100509

    Article  CAS  Google Scholar 

  12. Singh TA, Sharma A, Tejwan N et al (2021) A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv Colloid Interface Sci 295:102495. https://doi.org/10.1016/j.cis.2021.102495

    Article  CAS  PubMed  Google Scholar 

  13. Nguyen V, Vu V, Nguyen T et al (2019) Antibacterial activity of TiO2- and ZnO-decorated with silver nanoparticles. J Compos Sci 3:61. https://doi.org/10.3390/jcs3020061

    Article  CAS  Google Scholar 

  14. Shu Z, Zhang Y, Yang Q, Yang H (2017) Halloysite nanotubes supported Ag and ZnO nanoparticles with synergistically enhanced antibacterial activity. Nanoscale Res Lett 12:135. https://doi.org/10.1186/s11671-017-1859-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Peng Y, Zhou H, Wu Y et al (2022) A new strategy to construct cellulose-chitosan films supporting Ag/Ag2O/ZnO heterostructures for high photocatalytic and antibacterial performance. J Colloid Interface Sci 609:188–199. https://doi.org/10.1016/j.jcis.2021.11.155

    Article  CAS  PubMed  Google Scholar 

  16. Balachandar R, Navaneethan R, Biruntha M et al (2022) Antibacterial activity of silver nanoparticles phytosynthesized from Glochidion candolleanum leaves. Mater Lett 311:131572. https://doi.org/10.1016/j.matlet.2021.131572

    Article  CAS  Google Scholar 

  17. Dharmaraj D, Krishnamoorthy M, Rajendran K et al (2021) Antibacterial and cytotoxicity activities of biosynthesized silver oxide (Ag2O) nanoparticles using Bacillus paramycoides. J Drug Deliv Sci Technol 61:102111. https://doi.org/10.1016/j.jddst.2020.102111

    Article  CAS  Google Scholar 

  18. Ahmed S, Annu CSA, Ikram S (2017) A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J Photochem Photobiol B Biol 166:272–284. https://doi.org/10.1016/j.jphotobiol.2016.12.011

    Article  CAS  Google Scholar 

  19. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28. https://doi.org/10.1016/j.jare.2015.02.007

    Article  CAS  PubMed  Google Scholar 

  20. Bandeira M, Giovanela M, Roesch-Ely M et al (2020) Green synthesis of zinc oxide nanoparticles: a review of the synthesis methodology and mechanism of formation. Sustain Chem Pharm 15:100223. https://doi.org/10.1016/j.scp.2020.100223

    Article  Google Scholar 

  21. Akintelu SA, Folorunso AS (2020) A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications. Bionanoscience 10:848–863. https://doi.org/10.1007/s12668-020-00774-6

    Article  Google Scholar 

  22. Agarwal H, Venkat Kumar S, Rajeshkumar S (2017) A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resour Technol 3:406–413. https://doi.org/10.1016/j.reffit.2017.03.002

    Article  Google Scholar 

  23. Nagajyothi PC, Prabhakar Vattikuti SV, Devarayapalli KC et al (2020) Green synthesis: photocatalytic degradation of textile dyes using metal and metal oxide nanoparticles-latest trends and advancements. Crit Rev Environ Sci Technol 50:2617–2723. https://doi.org/10.1080/10643389.2019.1705103

    Article  CAS  Google Scholar 

  24. Rafique M, Tahir R, Gillani SSA et al (2022) Plant-mediated green synthesis of zinc oxide nanoparticles from Syzygium Cumini for seed germination and wastewater purification. Int J Environ Anal Chem 102:23–38. https://doi.org/10.1080/03067319.2020.1715379

    Article  CAS  Google Scholar 

  25. Xu J, Huang Y, Zhu S et al (2021) A review of the green synthesis of ZnO nanoparticles using plant extracts and their prospects for application in antibacterial textiles. J Eng Fiber Fabr 16:155892502110462. https://doi.org/10.1177/15589250211046242

    Article  CAS  Google Scholar 

  26. Bhatti MA, Tahira A, Hullio AA et al (2023) Oxygenated terminals of milky sap of Calotropis procera transformed 1D ZnO structure to 0D nanoparticles for enhanced photocatalytic degradation of malachite green and methylene blue. J Mater Sci Mater Electron 34:929. https://doi.org/10.1007/s10854-023-10290-4

    Article  CAS  Google Scholar 

  27. Yuliarto B, Septiani NLW, Kaneti YV et al (2019) Green synthesis of metal oxide nanostructures using naturally occurring compounds for energy, environmental, and bio-related applications. New J Chem 43:15846–15856. https://doi.org/10.1039/C9NJ03311D

    Article  CAS  Google Scholar 

  28. Lopes de Almeida W, Ferreira NS, Rodembusch FS, Caldas de Sousa V (2020) Study of structural and optical properties of ZnO nanoparticles synthesized by an eco-friendly tapioca-assisted route. Mater Chem Phys 123926. https://doi.org/10.1016/j.matchemphys.2020.123926

  29. de Almeida WL, Rodembusch FS, Ferreira NS, Caldas de Sousa V (2020) Eco-friendly and cost-effective synthesis of ZnO nanopowders by Tapioca-assisted sol-gel route. Ceram Int 46:10835–10842. https://doi.org/10.1016/j.ceramint.2020.01.095

    Article  CAS  Google Scholar 

  30. Khan A, Kamal T, Saad M et al (2023) Synthesis and antibacterial activity of nanoenhanced conjugate of Ag-doped ZnO nanorods with graphene oxide. Spectrochim Acta Part A Mol Biomol Spectrosc 290:122296. https://doi.org/10.1016/j.saa.2022.122296

    Article  CAS  Google Scholar 

  31. Ahmad M, Zaidi SJA, Zoha S et al (2020) Pseudo-SILAR assisted unique synthesis of ZnO/Ag2O nanocomposites for improved photocatalytic and antibacterial performance without cytotoxic effect. Colloids Surf A: Physicochem Eng Asp 603:125200. https://doi.org/10.1016/j.colsurfa.2020.125200

    Article  CAS  Google Scholar 

  32. Cohen ML (2000) Changing patterns of infectious disease. Nature 406:762–767. https://doi.org/10.1038/35021206

    Article  CAS  PubMed  Google Scholar 

  33. Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B Condens Matter 192:55–69. https://doi.org/10.1016/0921-4526(93)90108-I

    Article  Google Scholar 

  34. Roisnel T, Rodriguez-Carvajal J (2001) WinPLOTR: A windows tool for powder diffraction pattern analysis. Mat Sci Forum 378–381:118–123. https://doi.org/10.4028/www.scientific.net/msf.378-381.118

    Article  Google Scholar 

  35. Caglioti G, Paoletti A, Ricci FP (1958) Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl Instruments 3:223–228. https://doi.org/10.1016/0369-643X(58)90029-X

    Article  CAS  Google Scholar 

  36. Matos RS, Monteiro MDS, Silva RS et al (2022) Novel Amapá latex-mediated synthesis of defective α-Fe2O3 nanoparticles with enhanced ferromagnetism and sunlight photocatalytic activity. Ceram Int. https://doi.org/10.1016/j.ceramint.2022.06.164

    Article  Google Scholar 

  37. Rodríquez-Carvajal J, Roisnel T (2004) Line broadening analysis using FullProf*: determination of microstructural properties. Mater Sci Forum 443–444:123–126. https://doi.org/10.4028/www.scientific.net/MSF.443-444.123

    Article  Google Scholar 

  38. Bauer AW (1966) Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol 45:149–158

    Article  Google Scholar 

  39. Al-Radadi NS, Abdullah FS et al (2022) Zingiber officinale driven bioproduction of ZnO nanoparticles and their anti-inflammatory, anti-diabetic, anti-Alzheimer, anti-oxidant, and anti-microbial applications. Inorg Chem Commun 140:109274. https://doi.org/10.1016/j.inoche.2022.109274

    Article  CAS  Google Scholar 

  40. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200. https://doi.org/10.1038/1811199a0

    Article  CAS  Google Scholar 

  41. Kumar S, Sandhir R, Ojha S (2014) Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC Res Notes 7:560. https://doi.org/10.1186/1756-0500-7-560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Khorsand Zak A, Abd Majid WH, Mahmoudian MR et al (2013) Starch-stabilized synthesis of ZnO nanopowders at low temperature and optical properties study. Adv Powder Technol 24:618–624. https://doi.org/10.1016/j.apt.2012.11.008

    Article  CAS  Google Scholar 

  43. Wang R, Li M, Liu J et al (2021) Dual modification manipulates rice starch characteristics following debranching and propionate esterification. Food Hydrocoll 119:106833. https://doi.org/10.1016/j.foodhyd.2021.106833

    Article  CAS  Google Scholar 

  44. Kizil R, Irudayaraj J, Seetharaman K (2002) Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J Agric Food Chem 50:3912–3918. https://doi.org/10.1021/jf011652p

    Article  CAS  PubMed  Google Scholar 

  45. Silva MRP, Matos RS, Pinto EP et al (2021) Advanced microtexture evaluation of dextran biofilms obtained from low cost substrate loaded with maytenus rigida extract. Mater Res 24 https://doi.org/10.1590/1980-5373-mr-2020-0597

  46. Qiao Y, Wang B, Ji Y et al (2019) Thermal decomposition of castor oil, corn starch, soy protein, lignin, xylan, and cellulose during fast pyrolysis. Bioresour Technol 278:287–295. https://doi.org/10.1016/j.biortech.2019.01.102

    Article  CAS  PubMed  Google Scholar 

  47. Hales MC, Frost RL (2007) Synthesis and vibrational spectroscopic characterisation of synthetic hydrozincite and smithsonite. Polyhedron 26:4955–4962. https://doi.org/10.1016/j.poly.2007.07.002

    Article  CAS  Google Scholar 

  48. Ferreira NS, Sasaki JM, Silva JRRS et al (2021) Visible-light-responsive photocatalytic activity significantly enhanced by active [V Zn + V O + ] defects in self-assembled ZnO Nanoparticles. Inorg Chem 60:4475–4496. https://doi.org/10.1021/acs.inorgchem.0c03327

    Article  CAS  PubMed  Google Scholar 

  49. Cai W, Wan J (2007) Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Colloid Interface Sci 305:366–370. https://doi.org/10.1016/j.jcis.2006.10.023

    Article  CAS  PubMed  Google Scholar 

  50. Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  CAS  Google Scholar 

  51. Zargar RA, Arora M, Bhat RA (2018) Study of nanosized copper-doped ZnO dilute magnetic semiconductor thick films for spintronic device applications. Appl Phys A 124:36. https://doi.org/10.1007/s00339-017-1457-5

    Article  CAS  Google Scholar 

  52. Sawada H, Wang R, Sleight AW (1996) An electron density residual study of zinc oxide. J Solid State Chem 122:148–150. https://doi.org/10.1006/jssc.1996.0095

    Article  CAS  Google Scholar 

  53. Suh I-K, Ohta H, Waseda Y (1988) High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction. J Mater Sci 23:757–760. https://doi.org/10.1007/BF01174717

    Article  CAS  Google Scholar 

  54. Niggli P (1922) XII. Die Kristallstruktur einiger Oxyde I. Zeitschrift für Krist - Cryst Mater 57:253–299. https://doi.org/10.1524/zkri.1922.57.1.253

    Article  CAS  Google Scholar 

  55. Ibrahim NA, Nada AA, Hassabo AG et al (2017) Effect of different capping agents on physicochemical and antimicrobial properties of ZnO nanoparticles. Chem Pap 71:1365–1375. https://doi.org/10.1007/s11696-017-0132-9

    Article  CAS  Google Scholar 

  56. Fouladi-Fard R, Aali R, Mohammadi-Aghdam S, Mortazavi-derazkola S (2022) The surface modification of spherical ZnO with Ag nanoparticles: a novel agent, biogenic synthesis, catalytic and antibacterial activities. Arab J Chem 15:103658. https://doi.org/10.1016/j.arabjc.2021.103658

    Article  CAS  Google Scholar 

  57. Imade EE, Ajiboye TO, Fadiji AE et al (2022) Green synthesis of zinc oxide nanoparticles using plantain peel extracts and the evaluation of their antibacterial activity. Sci African 16:e01152. https://doi.org/10.1016/j.sciaf.2022.e01152

    Article  CAS  Google Scholar 

  58. Akbarizadeh MR, Sarani M, Darijani S (2022) Study of antibacterial performance of biosynthesized pure and Ag-doped ZnO nanoparticles. Rend Lincei Sci Fis e Nat 33:613–621. https://doi.org/10.1007/s12210-022-01079-4

    Article  Google Scholar 

  59. Hileuskaya KS, Mashkin ME, Kraskouski AN et al (2021) Hydrothermal synthesis and properties of chitosan–silver nanocomposites. Russ J Inorg Chem 66:1128–1134. https://doi.org/10.1134/S0036023621080064

    Article  CAS  Google Scholar 

  60. Yang J, Pan J (2012) Hydrothermal synthesis of silver nanoparticles by sodium alginate and their applications in surface-enhanced Raman scattering and catalysis. Acta Mater 60:4753–4758. https://doi.org/10.1016/j.actamat.2012.05.037

    Article  CAS  Google Scholar 

  61. Chakraborty U, Garg P, Bhanjana G et al (2022) Spherical silver oxide nanoparticles for fabrication of electrochemical sensor for efficient 4-nitrotoluene detection and assessment of their antimicrobial activity. Sci Total Environ 808:152179. https://doi.org/10.1016/j.scitotenv.2021.152179

    Article  CAS  PubMed  Google Scholar 

  62. De AK, Sinha I (2022) Synergistic effect of Ni doping and oxygen vacancies on the visible light photocatalytic properties of Ag2O nanoparticles. J Phys Chem Solids 167:110733. https://doi.org/10.1016/j.jpcs.2022.110733

    Article  CAS  Google Scholar 

  63. Parvez Ahmad M, Venkateswara Rao A, Suresh Babu K, Narsinga Rao G (2019) Particle size effect on the dielectric properties of ZnO nanoparticles. Mater Chem Phys 224:79–84. https://doi.org/10.1016/j.matchemphys.2018.12.002

    Article  CAS  Google Scholar 

  64. Jayappa MD, Ramaiah CK, Kumar MAP et al (2020) Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: characterization and their applications. Appl Nanosci 10:3057–3074. https://doi.org/10.1007/s13204-020-01382-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sultana KA, Islam MT, Silva JA et al (2020) Sustainable synthesis of zinc oxide nanoparticles for photocatalytic degradation of organic pollutant and generation of hydroxyl radical. J Mol Liq 307:112931. https://doi.org/10.1016/j.molliq.2020.112931

    Article  CAS  Google Scholar 

  66. Tyagi PK, Gola D, Tyagi S et al (2020) Synthesis of zinc oxide nanoparticles and its conjugation with antibiotic: antibacterial and morphological characterization. Environ Nanotechnology, Monit Manag 14:100391. https://doi.org/10.1016/j.enmm.2020.100391

    Article  Google Scholar 

  67. B. Aziz S (2017) Investigation of metallic silver nanoparticles through UV-vis and optical micrograph techniques. Int J Electrochem Sci 363–373 https://doi.org/10.20964/2017.01.22

  68. Laouini SE, Bouafia A, Soldatov A V et al (2021) Green synthesized of Ag/Ag2O nanoparticles using aqueous leaves extracts of Phoenix dactylifera L. and their azo dye photodegradation Membranes (Basel) 11:468 https://doi.org/10.3390/membranes11070468

  69. Kanmani P, Rhim J-W (2014) Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydr Polym 106:190–199. https://doi.org/10.1016/j.carbpol.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  70. Panchal P, Paul DR, Sharma A et al (2020) Biogenic mediated Ag/ZnO nanocomposites for photocatalytic and antibacterial activities towards disinfection of water. J Colloid Interface Sci 563:370–380. https://doi.org/10.1016/j.jcis.2019.12.079

    Article  CAS  PubMed  Google Scholar 

  71. Suganya R, Revathi A, Sudha D et al (2022) Evaluation of structural, optical properties and photocatalytic activity of Ag2O coated ZnO nanoparticles. J Mater Sci Mater Electron 33:23224–23235. https://doi.org/10.1007/s10854-022-09086-9

    Article  CAS  Google Scholar 

  72. Aljawfi RN, Alam MJ, Rahman F et al (2020) Impact of annealing on the structural and optical properties of ZnO nanoparticles and tracing the formation of clusters via DFT calculation. Arab J Chem 13:2207–2218. https://doi.org/10.1016/j.arabjc.2018.04.006

    Article  CAS  Google Scholar 

  73. Shao HP, Tan YM, Lin T, Guo ZM (2012) Size-controlled synthesis of magnetite nanoparticles from iron acetate by thermal decomposition. Appl Mech Mater 217–219:256–259. https://doi.org/10.4028/www.scientific.net/AMM.217-219.256

    Article  CAS  Google Scholar 

  74. Ahn CH, Kim YY, Kim DC et al (2009) A comparative analysis of deep level emission in ZnO layers deposited by various methods. J Appl Phys 105:013502. https://doi.org/10.1063/1.3054175

    Article  CAS  Google Scholar 

  75. Zhang YZ, Lu JG, Ye ZZ et al (2008) Effects of growth temperature on Li–N dual-doped p-type ZnO thin films prepared by pulsed laser deposition. Appl Surf Sci 254:1993–1996. https://doi.org/10.1016/j.apsusc.2007.08.008

    Article  CAS  Google Scholar 

  76. Ashokkumar M, Muthukumaran S (2015) Effect of Ni doping on electrical, photoluminescence and magnetic behavior of Cu doped ZnO nanoparticles. J Lumin 162:97–103. https://doi.org/10.1016/j.jlumin.2015.02.019

    Article  CAS  Google Scholar 

  77. Haja Hameed AS, Louis G, Karthikeyan C et al (2019) Impact of l-arginine and l-histidine on the structural, optical and antibacterial properties of Mg doped ZnO nanoparticles tested against extended-spectrum beta-lactamases (ESBLs) producing Escherichia coli. Spectrochim Acta Part A Mol Biomol Spectrosc 211:373–382. https://doi.org/10.1016/j.saa.2018.12.025

    Article  CAS  Google Scholar 

  78. Hameed ASH, Karthikeyan C, Ahamed AP et al (2016) In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae. Sci Rep 6:24312. https://doi.org/10.1038/srep24312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gandhi V, Ganesan R, Abdulrahman Syedahamed HH, Thaiyan M (2014) Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method. J Phys Chem C 118:9715–9725. https://doi.org/10.1021/jp411848t

    Article  CAS  Google Scholar 

  80. Peng-Shou X, Yu-Ming S, Chao-Shu S et al (2001) Native Point Defect States in ZnO. Chinese Phys Lett 18:1252–1253. https://doi.org/10.1088/0256-307X/18/9/331

    Article  Google Scholar 

  81. Fang M, Tang CM, Liu ZW (2018) Microwave-assisted hydrothermal synthesis of Cu-doped ZnO single crystal nanoparticles with modified photoluminescence and confirmed ferromagnetism. J Electron Mater 47:1390–1396. https://doi.org/10.1007/s11664-017-5928-4

    Article  CAS  Google Scholar 

  82. Mariappan R, Ponnuswamy V, Suresh P (2012) Effect of doping concentration on the structural and optical properties of pure and tin doped zinc oxide thin films by nebulizer spray pyrolysis (NSP) technique. Superlattices Microstruct 52:500–513. https://doi.org/10.1016/j.spmi.2012.05.016

    Article  CAS  Google Scholar 

  83. Ravichandran AT, Karthick R (2020) Enhanced photoluminescence, structural, morphological and antimicrobial efficacy of Co-doped ZnO nanoparticles prepared by Co-precipitation method. Results Mater 5:100072. https://doi.org/10.1016/j.rinma.2020.100072

    Article  Google Scholar 

  84. Arunpandian M, Marnadu R, Kannan R et al (2021) Fabrication of Cu/ZnO system: a dual performer as photocatalyst and luminescent material. Inorg Chem Commun 134:109022. https://doi.org/10.1016/j.inoche.2021.109022

    Article  CAS  Google Scholar 

  85. Karthika K, Ravichandran K (2015) Tuning the microstructural and magnetic properties of ZnO nanopowders through the simultaneous doping of Mn and Ni for biomedical applications. J Mater Sci Technol 31:1111–1117. https://doi.org/10.1016/j.jmst.2015.09.001

    Article  CAS  Google Scholar 

  86. Samavati A, Awang A, Samavati Z et al (2021) Influence of ZnO nanostructure configuration on tailoring the optical bandgap: theory and experiment. Mater Sci Eng B 263:114811. https://doi.org/10.1016/j.mseb.2020.114811

    Article  CAS  Google Scholar 

  87. Zhao S, Cai H, Li P (2016) Pure purple line and red line emissions of ZnO nanomaterials. J Nanosci Nanotechnol 16:7738–7741. https://doi.org/10.1166/jnn.2016.13065

    Article  CAS  Google Scholar 

  88. Umrani RD, Paknikar KM (2014) Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. Nanomedicine 9:89–104. https://doi.org/10.2217/nnm.12.205

    Article  CAS  PubMed  Google Scholar 

  89. Hussein J, El-Naggar ME, Latif YA et al (2018) Solvent-free and one-pot synthesis of silver and zinc oxide nanoparticles: activity toward cell membrane component and insulin signaling pathway in experimental diabetes. Colloids Surfaces B Biointerfaces 170:76–84. https://doi.org/10.1016/j.colsurfb.2018.05.058

    Article  CAS  PubMed  Google Scholar 

  90. Haase H, Overbeck S, Rink L (2008) Zinc supplementation for the treatment or prevention of disease: Current status and future perspectives. Exp Gerontol 43:394–408. https://doi.org/10.1016/j.exger.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  91. Abirami A, Nagarani G, Siddhuraju P (2014) In vitro antioxidant, anti-diabetic, cholinesterase and tyrosinase inhibitory potential of fresh juice from Citrus hystrix and C. maxima fruits. Food Sci Hum Wellness 3:16–25. https://doi.org/10.1016/j.fshw.2014.02.001

    Article  Google Scholar 

  92. Sharma A, Nagraik R, Venkidasamy B et al (2022) In vitro antidiabetic, antioxidant, antimicrobial, and cytotoxic activity of Murraya koenigii leaf extract intercedes ZnO nanoparticles. Luminescence https://doi.org/10.1002/bio.4244

  93. El-Mohsnawy E, El-Shaer A, El-Gharabawy F et al (2023) Assignment of the antibacterial potential of Ag2O/ZnO nanocomposite against MDR bacteria Proteus mirabilis and Salmonella typhi isolated from bone marrow transplant patients. Brazilian J Microbiol 54:2807–2815. https://doi.org/10.1007/s42770-023-01138-4

    Article  CAS  Google Scholar 

  94. Sullivan KT, Wu C, Piekiel NW et al (2013) Synthesis and reactivity of nano-Ag2O as an oxidizer for energetic systems yielding antimicrobial products. Combust Flame 160:438–446. https://doi.org/10.1016/j.combustflame.2012.09.011

    Article  CAS  Google Scholar 

  95. Kumar H (2018) Manisha. Int J Adv Res Sci Eng 7:632–637

    Google Scholar 

  96. Munawar T, Yasmeen S, Hasan M et al (2020) Novel tri-phase heterostructured ZnO–Yb2O3–Pr2O3 nanocomposite; structural, optical, photocatalytic and antibacterial studies. Ceram Int 46:11101–11114. https://doi.org/10.1016/j.ceramint.2020.01.130

    Article  CAS  Google Scholar 

  97. Zarei M, Karimi E, Oskoueian E et al (2021) Comparative study on the biological effects of sodium citrate-based and apigenin-based synthesized silver nanoparticles. Nutr Cancer 73:1511–1519. https://doi.org/10.1080/01635581.2020.1801780

    Article  CAS  PubMed  Google Scholar 

  98. Gudkov SV, Serov DA, Astashev ME et al (2022) Ag2O nanoparticles as a candidate for antimicrobial compounds of the new generation. Pharmaceuticals 15:968. https://doi.org/10.3390/ph15080968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Das B, Dash SK, Mandal D et al (2017) Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab J Chem 10:862–876. https://doi.org/10.1016/j.arabjc.2015.08.008

    Article  CAS  Google Scholar 

  100. Burmistrov DE, Simakin AV, Smirnova VV et al (2021) Bacteriostatic and cytotoxic properties of composite material based on ZnO nanoparticles in PLGA obtained by low temperature method. Polymers (Basel) 14:49. https://doi.org/10.3390/polym14010049

    Article  CAS  PubMed  Google Scholar 

  101. Panáček A, Kvítek L, Prucek R et al (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253. https://doi.org/10.1021/jp063826h

    Article  CAS  PubMed  Google Scholar 

  102. Ocsoy I, Paret ML, Ocsoy MA et al (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7:8972–8980. https://doi.org/10.1021/nn4034794

    Article  CAS  PubMed  Google Scholar 

  103. Zare M, Namratha K, Byrappa K et al (2018) Surfactant assisted solvothermal synthesis of ZnO nanoparticles and study of their antimicrobial and antioxidant properties. J Mater Sci Technol 34:1035–1043. https://doi.org/10.1016/j.jmst.2017.09.014

    Article  CAS  Google Scholar 

  104. Javed R, Usman M, Tabassum S, Zia M (2016) Effect of capping agents: structural, optical and biological properties of ZnO nanoparticles. Appl Surf Sci 386:319–326. https://doi.org/10.1016/j.apsusc.2016.06.042

    Article  CAS  Google Scholar 

  105. Sundaram Sanjay S, Shukla AK (2021) Mechanism of antioxidant activity. In: Potential therapeutic applications of nano-antioxidants. Springer Singapore, Singapore, pp 83–99

Download references

Acknowledgements

The authors thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Código financeiro 001) and FAPEAM (Fundação de Amparo à Pesquisa do Estado do Amazonas, EDITAL N. 010/2021- CT&I ÁREAS PRIORITÁRIAS and EDITAL N. 013/2022-PRODUTIVIDADE EM CT&I) for the financial support, as well as the use of the infrastructure of the Analytical Center of Universidade Federal do Amazonas (UFAM) and the infrastructure of Centro Multiusuário para Análise de Fenômenos Biomédicos of Universidade do Estado do Amazonas (CMABio—UEA). GQR acknowledges funding support from CNPq Processo 100740/2023-5. H.D.d.F.F. acknowledges funding support from CNPq Processo 306210/2022-3).

Funding

Funding was received for this work. All of the sources of funding for the work described in this publication are acknowledged as follows: Conselho Nacional do Desenvolvimento Científico e Tecnológico (CNPq) (grants no. 100740/2023–5 and 306210/2022–3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis E. Almeida.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7025 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.R.P., Matos, R.S., Monteiro, M.D.S. et al. Defect-engineered Ag/ZnO and Ag2O/ZnO nanomaterials prepared with nanoparticles synthesized by a sustainable sol–gel method and their biological responses. J Nanopart Res 26, 69 (2024). https://doi.org/10.1007/s11051-024-05973-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05973-w

Keywords

Navigation