Skip to main content

Advertisement

Log in

Study of nanosized copper-doped ZnO dilute magnetic semiconductor thick films for spintronic device applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Screen-printed pure and copper-doped ZnO dilute magnetic semiconductor thick films were casted from chemically co-precipitated zinc oxide and copper-doped zinc oxide nanoparticles followed by sintering at 550 °C to obtain desired stoichiometry in spintronic device applications. These thick films were characterized by different analytical techniques to reveal their structure, surface morphology, optical, magnetic and electrical characteristics. The diffraction peaks pertaining to wurtzite structure are observed in XRD patterns of these films, while SEM images show smooth and dense morphology. Infrared transmission and Raman spectra exhibit vibrational bands pertaining to Zn–O-stretching modes and E 2 (high) phonon mode, respectively, in 4000–400 cm−1 region. The direct bandgap energy of these films derived from diffused reflectance spectroscopy varies in 3.21–3.13 eV range and is supported by PL spectroscopy study. The semiconducting behaviour and activation energy of these thick films has been confirmed by DC conductivity measurements. Electron paramagnetic resonance spectra showed derivative signal of g value 2.0018 in pure ZnO due to oxygen vacancies produced during synthesis and 2.0704 in copper-doped ZnO dilute magnetic semiconductor films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.B. Buchholz, R.P.H. Chang, J.-Y. Song, J.B. Ketterson, Appl. Phys. Lett. 87, 082504 (2005)

    Article  ADS  Google Scholar 

  2. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. Von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2000)

    Article  ADS  Google Scholar 

  3. R.N. Gurzhi, A.N. Kalinenko, A.I. Kopeliovich, A.V. Yanousky, E.N. Bogachek, U. Landman, Phys. Rev. B 68, 125113 (2003)

    Article  ADS  Google Scholar 

  4. F. Li, Y. Yuan, J. Luo, Q. Qin, J. Wu, Z. Li, X. Huang, Appl. Surf. Sci. 256, 6076 (2010)

    Article  ADS  Google Scholar 

  5. Q. Wang, B. Geng, S. Wang, Environ. Sci. Technol. 43, 8968 (2009)

    Article  ADS  Google Scholar 

  6. M. Ungureanu, H. Schmidt, H.V. Wenckstern, H. Hochmuth, M. Lorenz, M. Grundmann, M. Fecioru-Morariu, G. Guntherodt, Thin Solid Films 515, 8761 (2007)

    Article  ADS  Google Scholar 

  7. Y. Zhou, S.X. Lu, W.G. Xu, Environ. Prog. Sustain. Energy 28, 226 (2009)

    Article  Google Scholar 

  8. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  9. K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys. Part 2 39, L555 (2000)

    Article  Google Scholar 

  10. M.S. Park, B.I. Min, Phys. Rev. B 68, 224436 (2003)

    Article  ADS  Google Scholar 

  11. C.-H. Chien, S.H. Chiou, G.Y. Gao, Y.-D. Yao, J. Magn. Magn. Mater. 282, 275 (2004)

    Article  ADS  Google Scholar 

  12. K. Sato, H. Katayama-Yoshida, Semi. Sci. Technol. 17, 367 (2002)

    Article  ADS  Google Scholar 

  13. K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001)

    Article  ADS  Google Scholar 

  14. S.W. Lim, M.C. Jeong, M.H. Ham, J.M. Myoung, J. Appl. Phys. 43, 280 (2004)

    Article  Google Scholar 

  15. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)

    Article  ADS  Google Scholar 

  16. M. El-Hilo, A.A. Dakhel, A.Y. Ali-Mohamed, J. Magn. Magn. Mater. 321, 2279 (2009)

    Article  ADS  Google Scholar 

  17. K. Ando, H. Saito, Z. Jin, T. Fukumura, M. Kawaski, Y. Matsumoto, H. Koinuma, J. Appl. Phys. 89, 7284 (2001)

    Article  ADS  Google Scholar 

  18. H.-J. Lee, B.-S. Kim, C.R. Cho, S.-Y. Jeong, Phys. Status Solidi B 241, 1533 (2004)

    Article  ADS  Google Scholar 

  19. T. Su, H. Zhang, PLOS ONE 12(1), e0171050 (2017)

    Article  Google Scholar 

  20. I.A. Hassan, S. Sathasivam, S.P. Nair, C.J. Carmalt, ACS Omega 2, 4556 (2017)

    Article  Google Scholar 

  21. L. Chow, O. Lupan, G. Chai, H. Khallaf, L.K. Ono, B.R. Cuenya, I.M. Tiginyanu, V.V. Ursaki, V. Sontea, A. Schulte, Sens Actuators A 189, 399–408 (2013)

    Article  Google Scholar 

  22. Y.S. Sonawane, K.G. Kanade, B.B. Kale, R.C. Aiyer, Mater. Res. Bull. 43, 2719 (2008)

    Article  Google Scholar 

  23. R.K. Shukla, A. Srivastava, N. Kumar, A. Pandey, M. Pandey, J. of Nanotech., Article ID 172864, 10 pages (2015)

    Google Scholar 

  24. P.S. Shewale, V.B. Patil, S.W. Shin, J.H. Kim, M.D. Uplane, Sens. Actuators B Chem. 186, 226 (2013)

    Article  Google Scholar 

  25. F.D. Paraguay, M. Miki-Yoshida, J. Morales, J. Solis, W.L. Estrada, Thin Solid Films 373, 137, (2000)

  26. H. Gong, J.Q. Hu, J.H. Wang, C.H. Ong, F.R. Zhu, Sens. Actuators B 115, 247 (2006)

    Article  Google Scholar 

  27. M. Zhao. X. Wang, L. Ning, J. Jia, X. Li, L. Cao, Sens. Actuators B 156, 588 (2011)

    Article  Google Scholar 

  28. A. Ghosh, A. Ghule, R. Sharma, J. Phys. Conf. Ser. 365, 012 (2012)

    Article  Google Scholar 

  29. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, J. Vac. Sci. Tech. B 22, 932 (2004)

    Article  Google Scholar 

  30. S. Muthukumaran, R. Gopalakrishnan, Opt. Mater., 34, 1946 (2012)

    Article  ADS  Google Scholar 

  31. R. Elilarassi, G. Chandrasekaran, J Mater. Sci. Mater. Electron. 21, 1168 (2010)

    Article  Google Scholar 

  32. C. Wu, L. Shen, H. Yu, Y.-C. Zhang, Q. Huang, Mater. Lett. 74, 236 (2012)

    Article  Google Scholar 

  33. H.Y. Bae, G.M. Choi, Sens. Actuators B Chem. 55, 47 (1999)

    Article  Google Scholar 

  34. R.A. Zargar, S. Chackrabarti, J. Md. Shahabuddin, M. Kumar, A.K. Arora, Hafiz, J. Mater. Sci. Mater. Electron. 26, 10027 (2015)

    Article  Google Scholar 

  35. S. Chackrabarti, R.A. Zargar, A. Aziz, A.K. Hafiz, J Mater Sci: Mater Electron 27, 5276 (2016)

    Google Scholar 

  36. R.D. Shannon, Acta Crystallogr. Sect. A Cryst Phys. Diffr. Theor. Gen. Crystallogr. 32, 751 (1976)

    Article  ADS  Google Scholar 

  37. R.A. Zargar, M. Arora, A.K. Hafiz, Eur. Phys. J. Appl. Phys 70, 70: 10403 (2015)

    Article  ADS  Google Scholar 

  38. R. Das, S. Pandey, Int. J. Mat. Sci 1, 35 (2011)

    Google Scholar 

  39. S. Cimitan, S. Albonetti, L. Forni, F. Peri, D. Lazzari, J. Colloid Interface Sci 329, 73 (2009)

    Article  ADS  Google Scholar 

  40. A.E. Morales, E.S. Mora, U. Pal, Rev. Mex. Fis. 53, 18 (2007)

    Google Scholar 

  41. J. Diouri, J.P. Lascaray, M. El, Amrani, Phys. Rev. B 31, 7995 (1985)

    Article  ADS  Google Scholar 

  42. R.B. Bylsma, W.M. Becker, J. Kossut, U. Debska, Phys. Rev. B 33, 8207 (1986)

    Article  ADS  Google Scholar 

  43. L.I. Soliman, H.H. Abify, J.K. Battisha, Ind. J. Pure Appl. Phys. 42, 12 (2004)

    Google Scholar 

  44. R.A. Zargar, M.A. Bhat, I.R. Parrey, M. Arora, J. Kumar, A. K. Hafiz, Optik 127, 6997 (2016)

    Article  ADS  Google Scholar 

  45. R.K. Gupta, M. Cavas, F. Yakuphanoglu, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 95, 107 (2012)

    Article  ADS  Google Scholar 

  46. S. Ilican, M. Caglar, Y. Caglar, Appl. Surf. Sci. 256, 720 (2010). 720

    Article  Google Scholar 

  47. H. Wang, H.B. Wang, F.J. Yang, Y. Chen, C. Zhang, C.P. Yang, Q. Li, S.P. Wong, Nanotechnology 17, 4312 (2006)

    Article  ADS  Google Scholar 

  48. M.H. Huang, Y.Y. Wu, H.N. Feick, N. Tran, E. Weber, P.D. Yang, Adv. Mater. 13, 113 (2001)

    Article  Google Scholar 

  49. S. Cho, J. Ma, Y. Kim, Y. Sun, G.K.L. Wong, J.B. Ketterson, Appl. Phys. Lett. 75, 2761 (1999)

    Article  ADS  Google Scholar 

  50. P. Zu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Solid State Commun. 103, 456 (1997)

    Article  ADS  Google Scholar 

  51. Four-Point, Probe Manual, EECS143, Micro fabrication Technology

  52. Y.H. Kim, H. Kawamura, M. Nawata, J. Mater. Sci 32, 1665 (1997)

    Article  ADS  Google Scholar 

  53. M. Arora, R.A. Zargar, S.D. Khan, Int. J. Spectrosc. (2015) (Article ID 431678)

  54. C. Drouilly, J.-M. Krafft, F. Averseng, S. Casale, D.B. Bachi, C. Chizallet, V. Lecocq, H. Vezin, H.L. Pernot, G. Costentin, J. Phys. Chem. C 116, 21297 (2012)

    Article  Google Scholar 

  55. X.J. Wang, L.S. Vlasenko, S.J. Pearton, W.M. Chen, I.A. Buyanova, J. Phys. D Appl. Phys. 42, 175411 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Dr. R. A. Zargar would like to thank Prof. M. A. Siddiqi (Vice Chancellor) of IUST, Dr. A. K. Hafiz from (JMI) and Prof. F. H. Bhat (HOD) Physics, IUST for their kind full cooperation throughout this tenure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rayees Ahmad Zargar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zargar, R.A., Arora, M. & Bhat, R.A. Study of nanosized copper-doped ZnO dilute magnetic semiconductor thick films for spintronic device applications. Appl. Phys. A 124, 36 (2018). https://doi.org/10.1007/s00339-017-1457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1457-5

Navigation