Skip to main content
Log in

One-step synthesis of Cu/Therminol VP-1 nanofluids by phase transfer method and their thermal stability and thermophysical properties

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Heat transfer oil-based nanofluids with metal nanoparticles can enhance energy conversion system thermal efficiency. However, high-surface-energy nanoparticles tend to aggregate, causing nanofluid instability. This study employed a one-step phase transfer synthesis method to prepare Therminol VP-1-based nanofluids containing copper nanoparticles. These nanofluids had uniform particle sizes of approximately 10.6 nm and excellent dispersion. The impact of four surfactants (Span-80, Tween-40, oleic acid, and dodecanethiol) on nanofluid stability was investigated, determining the optimal surfactant concentration range for superior dispersion stability. Nanofluid stability was also evaluated considering nanoparticle concentration, temperature variations, and heating–cooling cycles. Additionally, the influence of temperature and nanoparticle concentration on nanofluid thermal conductivity and viscosity was examined. A theoretical model based on Brownian motion has been used to predict thermal conductivity. The predicted values agreed well with experimental results when considering the variation in nanoparticle size caused by particle aggregation during the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. The raw datasets, including the primary data used to generate the figures and tables in this manuscript, will be stored in a secure repository for a period of 5 years following the publication of this article. Access to the data can be obtained by contacting the corresponding author at zhoulu@tyut.edu.cn.

References

  1. Sahin AZ, Uddin MA, Yilbas BS et al (2020) Performance enhancement of solar energy systems using nanofluids: an updated review. Renew Energy 145:1126–1148. https://doi.org/10.1016/j.renene.2019.06.108

    Article  CAS  Google Scholar 

  2. Mehta B, Subhedar D, Panchal H et al (2022) Synthesis, stability, thermophysical properties and heat transfer applications of nanofluid-a review. J Mol Liq 364:120034. https://doi.org/10.1016/j.molliq.2022.120034

    Article  CAS  Google Scholar 

  3. Li FS, Li L, Zhong GJ et al (2018) Effects of ultrasonic time, size of aggregates and temperature on the stability and viscosity of Cu-ethylene glycol (EG) nanofluids. Int J Heat Mass Tran 129:278–286. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.104

    Article  CAS  Google Scholar 

  4. Navas J, Sánchez-Coronilla A, Martín EI et al (2016) On the enhancement of heat transfer fluid for concentrating solar power using Cu and Ni nanofluids: an experimental and molecular dynamics study. Nano Energy 27:213–224. https://doi.org/10.1016/j.nanoen.2016.07.004

    Article  CAS  Google Scholar 

  5. Gomez-Villarejo R, Martin EI, Navas J et al (2017) Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: Nano-level insights. Appl Energy 194:19–29. https://doi.org/10.1016/j.apenergy.2017.03.003

    Article  ADS  CAS  Google Scholar 

  6. Martinez-Merino P, Sani E, Mercatelli L et al (2020) WSe2 nanosheets synthesized by a solvothermal process as advanced nanofluids for thermal solar energy. ACS Sustain Chem Eng 8(3):1627–1636. https://doi.org/10.1021/acssuschemeng.9b06489

    Article  CAS  Google Scholar 

  7. Gómez-Villarejo R, MEI, Sánchez-Coronilla A et al (2018) Towards the improvement of the global efficiency of concentrating solar power plants by using Pt-based nanofluids: The internal molecular structure effect. Appl Energy 228:2262-2274.https://doi.org/10.1016/j.apenergy.2018.07.062

  8. Gómez-Villarejo R, Navas J, Martín EI et al (2017) Preparation of Au nanoparticles in a non-polar medium: obtaining high-efficiency nanofluids for concentrating solar power. An experimental and theoretical perspective. J Mater Chem A 5(24):12483–12497. https://doi.org/10.1039/C7TA00986K

  9. Said Z, Sundar LS, Tiwari AK et al (2022) Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids. Phys Rep 946:1–94. https://doi.org/10.1016/j.physrep.2021.07.002

    Article  ADS  CAS  Google Scholar 

  10. Ponticorvo E, Iuliano M, Cirillo C et al (2022) Fouling behavior and dispersion stability of nanoparticle-based refrigeration fluid. Energies 15:3059. https://doi.org/10.3390/en15093059

    Article  CAS  Google Scholar 

  11. Sharaf OZ, Taylor RA, Abu-Nada E (2020) On the colloidal and chemical stability of solar nanofluids: from nanoscale interactions to recent advances. Phys Rep 867:1–84. https://doi.org/10.1016/j.physrep.2020.04.005

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. Chakraborty S, Panigrahi PK (2020) Stability of nanofluid: a review. Appl Therm Eng Appl Therm Eng 174:115259. https://doi.org/10.1016/j.applthermaleng.2020.115259

    Article  CAS  Google Scholar 

  13. Sezer N, Atieh MA, Koc M (2019) A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids. Powder Technol 344:404–431. https://doi.org/10.1016/j.powtec.2018.12.016

    Article  CAS  Google Scholar 

  14. Perala SRK, Kumar S (2013) On the mechanism of phase transfer catalysis in Brust-Schiffrin synthesis of metal nanoparticles. Langmuir 29(48):14756–14762. https://doi.org/10.1021/la403652k

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Zaluzhna O, Zangmeister CD et al (2012) Different mechanisms govern the two-phase Brust-Schiffrin dialkylditelluride syntheses of Ag and Au nanoparticles. J Am Chem Soc 134(4):1990–1992. https://doi.org/10.1021/ja210359r

    Article  CAS  PubMed  Google Scholar 

  16. Yang J, Sargent EH, Kelley SO et al (2009) A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis. Nat Mater 8(8):683–689. https://doi.org/10.1038/nmat2628

    Article  CAS  PubMed  Google Scholar 

  17. Wang CX, Yang J, Ding YL (2013) Phase transfer based synthesis and thermophysical properties of Au/Therminol VP-1 nanofluids. Prog Nat Sci Mater 23(3):338–342. https://doi.org/10.1016/j.pnsc.2013.04.006

    Article  Google Scholar 

  18. Cacua K, Ordoñez F, Zapata C et al (2019) Surfactant concentration and pH effects on the zeta potential values of alumina nanofluids to inspect stability. Colloids Surf A 583:123960. https://doi.org/10.1016/j.colsurfa.2019.123960

    Article  CAS  Google Scholar 

  19. Ma MY, Zhai YL, Yao PT et al (2021) Effect of surfactant on the rheological behavior andt hermophysical properties of hybrid nanofluids. Powder Technol 379:373–383. https://doi.org/10.1016/j.powtec.2020.10.089

    Article  CAS  Google Scholar 

  20. Zhou MZ, Xia GD, Jian L et al (2012) Analysis of factors influencing thermal conductivity and viscosity in different kinds of surfactant solutions. Exp Therm Fluid Sci 36(1):22–29. https://doi.org/10.1016/j.expthermflusci.2011.07.014

    Article  CAS  Google Scholar 

  21. Ghodselahi T, Vesaghi MA, Shafiekhani A et al (2008) XPS study of the Cu@Cu2O core-shell nanoparticles. Appl Surf Sci 255:2730–2734. https://doi.org/10.1016/j.apsusc.2008.08.110

    Article  ADS  CAS  Google Scholar 

  22. Zhou L, Zhao YF, Ma HH (2020) Experimental investigation on stability and thermal conductivity of dodecanethiol-coated copper nanofluids. J Nanopart Res 22(7):199. https://doi.org/10.1007/s11051-020-04943-2

    Article  CAS  Google Scholar 

  23. Liu LN, Li WP, Xiong ZS et al (2019) Synergistic effect of iron and copper oxides on the formation of persistent chlorinated aromatics in iron ore sintering based on in situ XPS analysis. J Hazard Mater 366(15):202–209. https://doi.org/10.1016/j.jhazmat.2018.11.105

    Article  CAS  PubMed  Google Scholar 

  24. Sahai A, Goswami N, Kaushik SD et al (2016) Cu/Cu2O/CuO nanoparticles: novel synthesis by exploding wire technique and extensive characterization. Appl Surf Sci 390:974–983. https://doi.org/10.1016/j.apsusc.2016.09.005

    Article  ADS  CAS  Google Scholar 

  25. Nourafkan E, Asachi M, Jin H et al (2019) Stability and photo-thermal conversion performance of binary nanofluids for solar absorption refrigeration systems. Renewable Energy 140:264–273. https://doi.org/10.1016/j.renene.2019.01.081

    Article  CAS  Google Scholar 

  26. Yang MC, Wang S, Zhu YZ et al (2020) Thermal stability and performance testing of oil-based CuO nanofluids for solar thermal applications. Energies 13(4):876. https://doi.org/10.3390/en13040876

    Article  CAS  Google Scholar 

  27. Hordy N, Rabilloud D, Meunier JL et al (2014) High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors. Sol Energy 105:82–90. https://doi.org/10.1016/j.solener.2014.03.013

    Article  ADS  CAS  Google Scholar 

  28. Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6(6):577–588. https://doi.org/10.1007/s11051-004-3170-5

    Article  Google Scholar 

  29. Prasher R, Bhattacharya P, Phelan PE (2006) Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. J Heat Transfer 128(6):588–595. https://doi.org/10.1115/HT2005-72048

    Article  CAS  Google Scholar 

  30. Vajjha RS, Das DK (2009) Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Tran 52(21–22):4675–4682. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the financial support provided by the Basic Research Projects of Shanxi Province, China [grant number 20210302123199].

Author information

Authors and Affiliations

Authors

Contributions

Lu Zhou: Methodology, Roles/Writing -original draft. Jiewei Zhu: Investigation, Data curation. Honghe Ma: Funding acquisition, Writing—review & editing.

Corresponding author

Correspondence to Lu Zhou.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Zhu, J. & Ma, H. One-step synthesis of Cu/Therminol VP-1 nanofluids by phase transfer method and their thermal stability and thermophysical properties. J Nanopart Res 26, 35 (2024). https://doi.org/10.1007/s11051-024-05950-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05950-3

Keywords

Navigation