Skip to main content
Log in

A facile way to prepare CuS-oil nanofluids with enhanced thermal conductivity and appropriate viscosity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The nanofluid as a pivotal role in heat transfer system has attracted more and more attention. Herein, the stearic acid-modified CuS (SA-CuS) nanoparticles with a uniform diameter of 60 nm were synthesized successfully by a facile two-phase approach. Accordingly, the CuS-oil nanofluids, with SA-CuS concentrations ranging from 0.01 to 0.04 vol%, were prepared by a one-step method in the heat transfer oil. These CuS-oil nanofluids exhibit good stability and considerable enhanced thermal conductivity. The improvement is even up to 20.5% with a volume fraction of 0.04 vol% at 30 °C. Furthermore, the effect of volume fraction and temperature on the viscosity of the nanofluids was also systematically investigated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal DK, Vaidyanathan A, Kumar SS (2013) Synthesis and characterization of kerosene–alumina nanofluids. Appl Therm Eng 60:275–284

    Article  Google Scholar 

  • Bruggeman DAG (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys-Berlin 416:665–679

    Article  Google Scholar 

  • Colangelo G, Favale E, Risi AD, Laforgia D (2012) Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications. Appl Energy 97:828–833

    Article  Google Scholar 

  • Deng C, Ge X, Hu H, Yao L, Han C, Zhao D (2014) Template-free and green sonochemical synthesis of hierarchically structured CuS hollow microspheres displaying excellent Fenton-like catalytic activities. CrystEngComm 16:2738–2745

    Article  Google Scholar 

  • Farbod M, Razieh KA, Abadi ARN (2015) Morphology dependence of thermal and rheological properties of oil-based nanofluids of CuO nanostructures. Colloid Surf A-Physicochem Eng Asp 474:71–75

    Article  Google Scholar 

  • Feng X, Johnson DW (2013) Characterization of dispersed and aggregated Al2O3 morphologies for predicting nanofluid thermal conductivities. J Nanopart Res 15:1718–1729

    Article  Google Scholar 

  • Ghanbari D, Salavati-Niasari M, Esmaeili-Zare M, Jamshidi P, Akhtarianfar F (2014) Hydrothermal synthesis of CuS nanostructures and their application on preparation of ABS-based nanocomposite. J Ind Eng Chem 20:3709–3713

    Article  Google Scholar 

  • Ghanbarpour M, Haghigi EB, Khodabandeh R (2014) Thermal properties and rheological behavior of water based Al2O3 nanofluid as a heat transfer fluid. Exp Thermal Fluid Sci 53:227–235

    Article  Google Scholar 

  • Ghatak A, Debnath GH, Mandal M, Mukherjee P (2015) Lanthanide cation-induced tuning of surface capping properties in zinc sulfide nanoparticles: an infrared absorption study. RSC Adv 5:32920–32932

    Article  Google Scholar 

  • He Y, Vasiraju S, Que L (2014) Hybrid nanomaterial-based nanofluids for micropower generation. RSC Adv 4:2433–2439

    Article  Google Scholar 

  • Jiang HF, Li H, Zan C, Wang FQ, Yang QP, Shi L (2014) Temperature dependence of the stability and thermal conductivity of an oil-based nanofluid. Thermochim Acta 579:27–30

    Article  Google Scholar 

  • Kristl M, Hojnik N, Gyergyek S, Drofenik M (2013) Sonochemical preparation of copper sulfides with different phases in aqueous solutions. Mater Res Bull 48:1184–1188

    Article  Google Scholar 

  • Li D, Hong B, Fang W, Guo Y, Lin R (2010) Preparation of well-dispersed silver nanoparticles for oil-based nanofluids. Ind Eng Chem Res 49:1697–1702

    Article  Google Scholar 

  • Li N, Zeng YX, Liu ZQ, Zhong XW, Chen S (2015) Nanofluids containing stearic acid-modified CuO nanorods and their thermal conductivity enhancements. Nanosci Nanotechnol Lett 7:314–317

    Article  Google Scholar 

  • Mariano A, Pastoriza-Gallego MJ, Lugo L, Mussari L, Piñeiro MM (2015) Co3O4 ethylene glycol-based nanofluids: thermal conductivity, viscosity and high pressure density. Int J Heat Mass Transf 85:54–60

    Article  Google Scholar 

  • Maxwell JC (1873) A treatise on electricity and magnetism. Clarendon Press, Oxford

    Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci 44:367–373

    Article  Google Scholar 

  • Pinto RV, Fiorelli FAS (2016) Review of the mechanisms responsible for heat transfer enhancement using nanofluids. Appl Therm Eng 108:720–739

    Article  Google Scholar 

  • Qin ZB, Tan L, Liu ZQ, Chen S, Qin JH, Tang JJ, Li N (2016) One-pot synthesis of ultrafine TiO2 nanoparticles with enhanced thermal conductivity for nanofluid applications. Adv Powder Technol 27:299–304

    Article  Google Scholar 

  • Roy P, Srivastava SK (2015) Nanostructured copper sulfides: synthesis, properties and applications. CrystEngComm 17:7801–7815

    Article  Google Scholar 

  • Saeedinia M, Akhavan-Behabadi MA, Razi P (2012) Thermal and rheological characteristics of CuO-Base oil nanofluid flow inside a circular tube. Int Commun Heat Mass Trans 39:152–159

    Article  Google Scholar 

  • Saidur R, Leong KY, Mohammad HA (2011) A review on applications and challenges of nanofluids. Renew Sust Energ Rev 15:1646–1668

    Article  Google Scholar 

  • Shalkevich N, Escher W, Bürgi T, Michel B, Si-Ahmed L, Poulikakos D (2010) On the thermal conductivity of gold nanoparticle colloids. Langmuir 26:663–670

    Article  Google Scholar 

  • Sinani VA, Gheith MK, Yaroslavov AA, Sun K, Mamedov AA, Wicksted JP, Kotov NA (2005) Aqueous dispersions of single-wall and multiwall carbon nanotubes with designed amphiphilic polycations. J Am Chem Soc 127:3463–3472

    Article  Google Scholar 

  • Tanveer M, Cao C, Aslam I, Ali Z, Idrees F, Khan WS, Tahir M, Khalid S, Nabi G, Mahmood A (2015) Synthesis of CuS flowers exhibiting versatile photo-catalyst response. N J Chem 39:1459–1468

    Article  Google Scholar 

  • Vatani A, Woodfield PL, Dao DV (2015) A survey of practical equations for prediction of effective thermal conductivity of spherical-particle nanofluids. J Mol Liq 211:712–733

    Article  Google Scholar 

  • Wang S, Feng L, Jiang L (2006) One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surface. Adv Mater 18:767–770

    Article  Google Scholar 

  • Wang BD, Wang BG, Wei PF, Wang XB, Lou WJ (2012) Controlled synthesis and size-dependent thermal conductivity of Fe3O4 magnetic nanofluids. Dalton Trans 41:896–899

    Article  Google Scholar 

  • Wei XH, Kong TT, Zhu HT, Wang LQ (2010) CuS/Cu2S nanofluids: synthesis and thermal conductivity. Int J Heat Mass Transf 53:1841–1843

    Article  Google Scholar 

  • Xie HQ, Fujii M, Zhang X (2005) Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int J Heat Mass Transf 48:2926–2932

    Article  Google Scholar 

  • Xuan YM, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21:58–64

    Article  Google Scholar 

  • Yiamsawasd T, Dalkilic AS, Wongwises S (2012) Measurement of the thermal conductivity of titania and alumina nanofluids. Thermochim Acta 545:48–56

    Article  Google Scholar 

  • Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5:167–171

    Article  Google Scholar 

  • Zeng YX, Zhong XW, Liu ZQ, Chen S, Li N (2013) Preparation and enhancement of thermal conductivity of heat transfer oil-based MoS2 nanofluids. J Nanomater 2013: Article ID 270490

  • Zhu DS, Li XF, Wang N, Wang XJ, Gao JW, Li H (2009) Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids. Curr Appl Phys 9:131–139

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Natural Science Foundations of China (grant number 21576056), Natural Science Foundations of Guangdong Province (grant numbers 2014A030313520 and 2015A030313503), Science and Technology Research Project of Guangdong Province (grant number 2016A010103043), and Science and Technology Research Project of Guangzhou (grant numbers 201607010232, 201607010198, and 201607010263).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, JH., Liu, ZQ., Li, N. et al. A facile way to prepare CuS-oil nanofluids with enhanced thermal conductivity and appropriate viscosity. J Nanopart Res 19, 40 (2017). https://doi.org/10.1007/s11051-017-3743-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3743-8

Keywords

Navigation