Skip to main content
Log in

Experimental investigation on stability and thermal conductivity of dodecanethiol-coated copper nanofluids

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanofluids were prepared by dispersing dodecanethiol-coated copper nanoparticles (~ 50 nm average diameter) in toluene. The stability and thermal conductivity of the nanofluids were investigated for various particle volume concentrations (0.09–1.5 vol%) and temperatures (293–333 K). The amount of dodecanethiol surfactant coated on the nanoparticle surface was determined by thermogravimetric analysis (TGA), and the chemical structure of adsorbed surfactant molecules was characterized by Fourier transform infrared spectroscopy (FT-IR). UV-vis absorbance analysis of the nanofluid was undertaken to determine the optimum ultrasonic vibration time for stability enhancement. The modeling study generated a new semi-practical correlation as a function of particle volume concentration and temperature for an existing Brownian motion–based thermal conductivity model, which demonstrated good compatibility with the present experimental measurements compared with other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Agarwal R, Verma K, Agrawal NK, Singh R (2017) Sensitivity of thermal conductivity for Al2O3 nanofluids. Exp Thermal Fluid Sci 80:19–26

    CAS  Google Scholar 

  • Anjani PN, Lior S, Israel F, Ilana P, Aharon G, Yosef Y (2018) Surfactant effect on the thermal and electrical behaviors of sonochemically synthesized Fe and Fe-PVP nanofluids and insight into the magnetism of their in situ oxidized α-Fe2O3 analogues. J Phys Chem C 122(36):20755–20762

    Google Scholar 

  • Asadi A, Asadi M, Siahmargoi M, Asadi T, Andarati MG (2017) The effect of surfactant and sonication time on the stability and thermal conductivity of water-based nanofluid containing Mg(OH)2 nanoparticles: an experimental investigation. Int J Heat Mass Transf 108:191–198

    CAS  Google Scholar 

  • Ahmad SHA, Saidur R, Mahbubul IM, Al-Sulaiman A (2017) Optical properties of various nanofluids used in solar collector: a review. Renew Sust Energ Rev 73:1014–1030

    CAS  Google Scholar 

  • Bhanushali S, Jason NN, Ghosh P, Ganesh A, Simon GP, Cheng WL (2017) Enhanced thermal conductivity of copper nanofluids: the effect of filler geometry. ACS Appl Mater Interfaces 9(22):18925–18935

    CAS  Google Scholar 

  • Bhattad A, Sarkar J, Ghosh P (2018) Improving the performance of refrigeration systems by using nanofluids: a comprehensive review. Renew Sust Energ Rev 82(3):3656–3669

    CAS  Google Scholar 

  • Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125(4):567–574

    CAS  Google Scholar 

  • Dong TY, Wu HH, Lin MC (2006) Superlattice of octanethiol-protected copper nanoparticles. Langmuir 22(16):6754–6756

    CAS  Google Scholar 

  • Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720

    CAS  Google Scholar 

  • E XTF, Zhang Y, Zou JJ, Wang L, Zhang XW (2014) Oleylamine-protected metal (Pt, Pd) nanoparticles for pseudohomogeneous catalytic cracking of JP-10 jet fuel. Ind Eng Chem Res 53(31):12312–12318

  • Ghodselahi T, Vesaghi MA, Shafiekhani A, Baghizadeh A, Lameii M (2008) XPS study of the Cu@Cu2O core-shell nanoparticles. Appl Surf Sci 255(5):2730–2734

    CAS  Google Scholar 

  • Gomez-Villarejo R, Navas J, Martin EI, Sanchez-Coronilla A, Aguilar T, Gallardo JJ, Santos DDL, Alcantara R, Fernandez-Lorenzo C, Martin-Calleja J (2017) Preparation of Au nanoparticles in a non-polar medium: obtaining high-efficiency nanofluids for concentrating solar power. An experimental and theoretical perspective. J Mater Chem A 5(24):12483–12497

    CAS  Google Scholar 

  • Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1(3):187–191

    CAS  Google Scholar 

  • Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84(21):4316–4318

    CAS  Google Scholar 

  • Jiang HF, Xu QH, Huang C, Shi L (2015) Effect of temperature on the effective thermal conductivity of n-tetradecane-based nanofluids containing copper nanoparticles. Particuology 22:95–99

    CAS  Google Scholar 

  • Kathiravan R, Kumar R, Gupta A, Chandra R (2012) Preparation and pool boiling characteristics of silver nanofluids over a flat plate heater. Heat Transfer Eng 33(2):69–78

    CAS  Google Scholar 

  • Kole M, Dey TK (2013) Enhanced thermophysical properties of copper nanoparticles dispersed in gear oil. Appl Therm Eng 56(1–2):45–53

    CAS  Google Scholar 

  • Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6(6):577–588

    Google Scholar 

  • Kumar A, Thakre GD, Arya PK, Jain AK (2017) Influence of operating parameters on the tribological performance of oleic acid-functionalized Cu nanofluids. Ind Eng Chem Res 56(13):3527–3541

    CAS  Google Scholar 

  • Kumar SA, Meenakshi KS, Narashimhan BRV, Srikanth S, Arthanareeswaran G (2009) Synthesis and characterization of copper nanofluid by a novel one-step method. Mater Chem Phys 113(1):57–62

    CAS  Google Scholar 

  • Liu LN, Li WP, Xiong ZS, Xia D, Yang CW, Wang W, Sun YF (2019) Synergistic effect of iron and copper oxides on the formation of persistent chlorinated aromatics in iron ore sintering based on in situ XPS analysis. J Hazard Mater 366:202–209

    CAS  Google Scholar 

  • Lenin R, Dadwal A, Joy P (2018) Thermal conductivity studies on magnetite nanofluids coated with short-chain and long-chain fatty acid surfactants. Bull Mater Sci 41(5):120

    Google Scholar 

  • Leong KC, Yang C, Murshed SMS (2006) A model for the thermal conductivity of nanofluids-the effect of interfacial layer. J Nanopart Res 8(2):245–254

    CAS  Google Scholar 

  • Li D, Xie WJ, Fang WJ (2011) Preparation and properties of copper-oil-based nanofluids. Nanoscale Res Lett 6(1):373

    Google Scholar 

  • Li D, Fang WJ, Zhang YY, Wang XY, Meng G, Qin XM (2017) Stability and thermal conductivity enhancement of silver nanofluids with gemini surfactants. Ind Eng Chem Res 56(43):12369–12375

    CAS  Google Scholar 

  • Li YJ, Zhou JE, Tung S, Schneider E, Xi SQ (2009) A review on development of nanofluid preparation and characterization. Powder Technol 196(2):89–101

    CAS  Google Scholar 

  • Manasrah AD, Laoui T, Zaidi SJ, Atieh MA (2017) Effect of PEG functionalized carbon nanotubes on the enhancement of thermal and physical properties of nanofluids. Exp Thermal Fluid Sci 84:231–241

    CAS  Google Scholar 

  • Patel HE, Das SK, Sundararajan T, Nair AS, George B, Pradeep T (2003) Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett 83(14):2931–2933

    CAS  Google Scholar 

  • Peng H, Ding GL, Hu HT (2011) Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid. Exp Thermal Fluid Sci 35(6):960–970

    CAS  Google Scholar 

  • Prasher R, Bhattacharya P, Phelan PE (2006) Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. J Heat Transf 128(6):588–595

    CAS  Google Scholar 

  • Robertis ED, Cosme EHH, Neves RS, Kuznetsov AY, Campos APC, Landi SM, Achete CA (2012) Application of the modulated temperature differential scanning calorimetry technique for the determination of the specific heat of copper nanofluids. Appl Therm Eng 41:10–17

    Google Scholar 

  • Sahai A, Goswami N, Kaushik SD, Tripathi S (2016) Cu/Cu2O/CuO nanoparticles: novel synthesis by exploding wire technique and extensive characterization. Appl Surf Sci 390:974–983

    CAS  Google Scholar 

  • Stocker KM, Neidhart SM, Gezelter JD (2016) Interfacial thermal conductance of thiolate-protected gold nanospheres. J Appl Phys 119:025106

    Google Scholar 

  • Vajjha RS, Das DK (2009) Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transf 52(21–22):4675–4682

    CAS  Google Scholar 

  • Vajjha RS, Das DK, Kulkarni DP (2010) Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids. Int J Heat Mass Transf 53(21–22):4607–4618

    CAS  Google Scholar 

  • Wang BX, Zhou LP, Peng XF (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46(14):2665–2672

    CAS  Google Scholar 

  • Wang XJ, Zhu DS, Yang S (2009) Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem Phys Lett 470(1–3):107–111

    CAS  Google Scholar 

  • Wei XH, Wang LQ (2010) Synthesis and thermal conductivity of microfluidic copper nanofluids. Particuology 8(3):262–271

    CAS  Google Scholar 

  • Wan ZH, Deng J, Li B, Xu YX, Wang XW, Tang Y (2015) Thermal performance of a miniature loop heat pipe using water–copper nanofluid. Appl Therm Eng 78:712–719

    CAS  Google Scholar 

  • Xie HQ, Chen LF (2011) Review on the preparation and thermal performances of carbon nanotube contained nanofluids. J Chem Eng Data 56(4):1030–1041

    CAS  Google Scholar 

  • Xuan YM, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21(1):58–64

    CAS  Google Scholar 

  • Yu F, Chen YY, Liang XB, Xu JL, Lee C, Liang Q, Tao P, Deng T (2017) Dispersion stability of thermal nanofluids. Prog Nat Sci: Materials International 27(5):531–542

    CAS  Google Scholar 

  • Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5(1–2):167–171

    CAS  Google Scholar 

Download references

Funding

This study was funded by Young Scientific Researcher Training Program of Higher Education Institutions in Shanxi and the Basic Research Projects of Shanxi Province, China (grant number 201901D211024).

Author information

Authors and Affiliations

Authors

Contributions

L. Zhou, Y. F. Zhao, and H. H. Ma designed research; H. H. Ma conducted review and editing; L. Zhou provided funding acquisition, project administration, and resources; and L. Zhou and Y. F. Zhao wrote the paper.

Corresponding author

Correspondence to Lu Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Zhao, Y. & Ma, H. Experimental investigation on stability and thermal conductivity of dodecanethiol-coated copper nanofluids. J Nanopart Res 22, 199 (2020). https://doi.org/10.1007/s11051-020-04943-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-04943-2

Keywords

Navigation