Skip to main content
Log in

Formation of 2D silicon-carbide nanoribbons by cooling from the melt and out-of-plane displacements of atoms

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Formation of two-dimensional (2D) crystalline silicon carbide (SiC) from the melt is studied using molecular dynamics (MD) simulations. Model containing 11040 atoms interacted via the Vashishta interaction potential is cooled from 4500 to 300 K to investigate the change in structure and thermodynamic properties. We find evidence that crystallization of 2D SiC from the melt undergoes over some stages as follows. At temperature high enough, liquid 2D SiC exhibits the chain-like structure and further cooling leads to the formation of 2D SiC liquid with the ring-like structure. After that massive occurrence/growth of solid-like atoms occurs in the system leading to the formation of 2D SiC with a honeycomb structure. Moreover, out-of-plane displacements of atoms in the SiC nanoribbons at the selected temperatures are found and discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Glavin NR, Rao R, Varshney V, Bianco E, Apte A, Roy A, Ringe E, Ajayan PM (2020) Emerging applications of elemental 2D materials. Adv Mater 32:1904302

    Article  CAS  Google Scholar 

  2. Seixas L (2020) Janus two-dimensional materials based on group IV monochalcogenides. J Appl Phys 128:045115

    Article  CAS  Google Scholar 

  3. Laturia AA, Van de Put ML, Vandenberghe WG (2020) Generation of empirical pseudopotentials for transport applications and their application to group IV materials. J Appl Phys 128:034306

    Article  CAS  Google Scholar 

  4. Guo Q, Chen N, Qu L (2020) Two-dimensional materials of group-IVA boosting the development of energy storage and conversion. Carbon Energy 2:54

    Article  Google Scholar 

  5. Novoselov K (2011) Nobel lecture: graphene: materials in the flatland. Rev Mod Phys 83:837

    Article  CAS  Google Scholar 

  6. Novoselov K, Morozov S, Mohinddin T, Ponomarenko L, Elias D, Yang R, Barbolina I, Blake P, Booth T, Jiang D (2007) Electronic properties of graphene. Phys Stat Sol B 244:4106

    Article  CAS  Google Scholar 

  7. Blake P, Hill E, Castro Neto A, Novoselov K, Jiang D, Yang R, Booth T, Geim A (2007) Making graphene visible. Appl Phys Lett 91:063124

    Article  Google Scholar 

  8. Kostarelos K, Novoselov KS (2014) Graphene devices for life. Nat Nanotechnol 9:744

    Article  CAS  Google Scholar 

  9. Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B (2010) Epitaxial growth of a silicene sheet. Appl Phys Lett 97:223109

    Article  Google Scholar 

  10. Stpniak-Dybala A, Dyniec P, Kopciuszyski M, Zdyb R, Jałochowski M, Krawiec M (2019) Planar silicene: a new silicon allotrope epitaxially grown by segregation. Adv Funct Mater 29:1906053

    Article  CAS  Google Scholar 

  11. Lin H, Qiu W, Liu J, Yu L, Gao S, Yao H, Chen Y, Shi J (2019) Silicene: wet-chemical exfoliation synthesis and biodegradable tumor nanomedicine. Adv Mater 31:1903013

    Article  Google Scholar 

  12. Ouyang J, Feng C, Ji X, Li L, Gutti HK, Kim NY, Artzi D, Xie A, Kong N, Liu YN (2019) 2D monoelemental germanene quantum dots: synthesis as robust photothermal agents for photonic cancer nanomedicine. Angew Chem 131:13539

    Article  Google Scholar 

  13. Liu L, Ji Y, Liu L (2019) First principles calculation of electronic, phonon and thermal properties of hydrogenated germanene. Bull Mater Sci 42:157

    Article  Google Scholar 

  14. Kostoglou N, Polychronopoulou K, Rebholz C (2015) Thermal and chemical stability of hexagonal boron nitride (h-BN) nanoplatelets. Vacuum 112:42

    Article  CAS  Google Scholar 

  15. Liu L, Feng Y, Shen Z (2003) Structural and electronic properties of h-BN. Phys Rev B 68:104102

    Article  Google Scholar 

  16. Nguyen HT (2019) Graphene layer of hybrid graphene/hexagonal boron nitride model upon heating. Carbon Lett 29:521

    Article  Google Scholar 

  17. Chen B, Zhang M, Li X, Dong Z, Jia Y, Li C (2020) Tribological properties of epoxy-based self-lubricating composite coating enhanced by 2D/2D h-BN/MoS2 hybrid. Prog Org Coat 147:105767

    Article  CAS  Google Scholar 

  18. Wu D, Huang C (2020) Thermal conductivity study of SiC nanoparticle beds for thermal insulation applications. Phys E: Low-Dimens Syst Nanostruct 118:113970

    Article  CAS  Google Scholar 

  19. Wasekar NP, Bathini L, Ramakrishna L, Rao DS, Padmanabham G (2020) Pulsed electrodeposition, mechanical properties and Wear mechanism in Ni-W/SiC nanocomposite coatings used for automotive applications. Appl Surf Sci 527:146896

    Article  CAS  Google Scholar 

  20. Nawaz H, Niazi AU (2020) A compact proximity-fed 2.4 GHz monostatic antenna with wide-band SiC characteristics for in-band full duplex applications. Int J RF Microw Comput Aided Eng 30:e22087

    Article  Google Scholar 

  21. Xing H, Zou B, Wang X, Hu Y, Huang C, Xue K (2020) Fabrication and characterization of SiC whiskers toughened Al2O3 paste for stereolithography 3D printing applications. J Alloys Comp 828:154347

    Article  CAS  Google Scholar 

  22. Shi Z, Zhang Z, Kutana A, Yakobson BI (2015) Predicting two-dimensional silicon carbide monolayers. ACS Nano 9:9802

    Article  CAS  Google Scholar 

  23. Freeman CL, Claeyssens F, Allan NL, Harding JH (2006) Graphitic nanofilms as precursors to wurtzite films: theory. Phys Rev Lett 96:066102

    Article  Google Scholar 

  24. Hoat D, Naseri M, Hieu NN, Ponce-Pérez R, Rivas-Silva J, Cocoletzi GH (2020) Transition from indirect to direct band gap in SiC monolayer by chemical functionalization: a first principles study. Superlatt Microstruct 137:106320

    Article  CAS  Google Scholar 

  25. Le Nguyen TM, Hoang VV, Nguyen HT (2020) Structural evolution of free-standing 2D silicon carbide upon heating. Eur Phys J D 74:1

    Article  Google Scholar 

  26. Wu P, Zhu W, Dai B, Chao Y, Li C, Li H, Zhang M, Jiang W, Li H (2016) Copper nanoparticles advance electron mobility of graphene-like boron nitride for enhanced aerobic oxidative desulfurization. Chem Eng J 301:123

    Article  CAS  Google Scholar 

  27. Robinson J, Weng X, Trumbull K, Cavalero R, Wetherington M, Frantz E, LaBella M, Hughes Z, Fanton M, Snyder D (2010) Nucleation of epitaxial graphene on SiC (0001). ACS Nano 4:153

    Article  CAS  Google Scholar 

  28. Bao J, Norimatsu W, Iwata H, Matsuda K, Ito T, Kusunoki M (2016) Synthesis of freestanding graphene on SiC by a rapid-cooling technique. Phys Rev Lett 117:205501

    Article  Google Scholar 

  29. Castelino R, Pham TT, Felten A, Sporken R (2019) Substrate temperature dependence of the crystalline quality for the synthesis of pure-phase MoTe2 on graphene/6H-SiC (0001) by molecular beam epitaxy. Nanotechnol 31:115702

    Article  Google Scholar 

  30. Lü T-Y, Liao X-X, Wang H-Q, Zheng J-C (2012) Tuning the indirect–direct band gap transition of SiC, GeC and SnC monolayer in a graphene-like honeycomb structure by strain engineering: a quasiparticle GW study. J Mater Chem 22:10062

    Article  Google Scholar 

  31. Bekaroglu E, Topsakal M, Cahangirov S, Ciraci S (2010) First-principles study of defects and adatoms in silicon carbide honeycomb structures. Phys Rev B 81:075433

    Article  Google Scholar 

  32. Sun L, Li Y, Li Z, Li Q, Zhou Z, Chen Z, Yang J, Hou JG (2008) Electronic structures of SiC nanoribbons. J Chem Phys 129:174114

    Article  Google Scholar 

  33. Lin S (2012) Light-emitting two-dimensional ultrathin silicon carbide. J Phys Chem C 116:3951

    Article  CAS  Google Scholar 

  34. Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39:5566

    Article  CAS  Google Scholar 

  35. Erhart P, Albe K (2005) Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phys Rev B 71:35211

    Article  Google Scholar 

  36. Vashishta P, Kalia RK, Nakano A, Rino JP (2007) Interaction potential for silicon carbide: a molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide. J Appl Phys 101:103515

    Article  Google Scholar 

  37. Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31:5262–5271

    Article  CAS  Google Scholar 

  38. Le Roux S, Petkov V (2010) ISAACS-interactive structure analysis of amorphous and crystalline systems. J Appl Crystallogr 43:181–185

    Article  Google Scholar 

  39. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  40. Scace RI, Slack GA (1960) Silicon carbide—A high temperature semiconductor. In: O’Connor JR, Smiltens J (eds) Silicon carbide - a high temperature semiconductor. Pergamon, Oxford, p 24

    Google Scholar 

  41. Harrison WA (1980) Electronic structure and the properties of solids: the physics of the chemical bond. Freeman, San Francisco

    Google Scholar 

  42. Hoang VV (2014) “Graphenization” of 2D simple monatomic liquids. J Phys: Condens Matter 26:205101

    Google Scholar 

  43. Mermin ND, Wagner H (1966) Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys Rev Lett 17:1133

    Article  CAS  Google Scholar 

  44. Mermin ND (1968) Crystalline order in two dimensions. Phys Rev 176:250

    Article  Google Scholar 

  45. Landau LD, Lifshitz EM (2013) Course of theoretical physics, vol 5. Elsevier

    Google Scholar 

  46. Bedanov V, Gadiyak G, Lozovik YE (1985) On a modified Lindemann-like criterion for 2D melting. Phys Lett A 109:289

    Article  Google Scholar 

  47. Tewary VK (2009) Extending time scale in molecular dynamics simulations: Propogation of ripples in gaphene. Phys Rev B 80:161409 (R)

    Article  Google Scholar 

  48. Smolyanistsky A (2014) Molecular dynamics simulation of thermal ripples in graphene. Nanotechnol 25:485701

    Article  Google Scholar 

  49. Deng S, Berry V (2016) Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater Today 19:197

    Article  CAS  Google Scholar 

  50. He YZ, Li H, Si PC, Li YF, Yu HQ, Zhang XQ, Ding F, Liew KM, Liu XF (2011) Dynamic ripples in single layer graphene. App Phys Lett 98:063101

    Article  Google Scholar 

  51. Dewapriya MAN, Phani AS, Rajapakse RKND (2013) Influence of temperature and free edges on the mechanical properties of graphene. Modelling Simul Mater Sci Eng 21:065017

    Article  CAS  Google Scholar 

  52. Hasik J, Tosatti E, Matonak R (2018) Quantum and classical ripples in graphene. Phys Rev B 97:140301(R)

    Article  Google Scholar 

  53. Yu J, Katsnelson MI, Yuan S (2022) Distribution of ripples in graphene membrane. Phys Rev B 106:045418

    Article  CAS  Google Scholar 

  54. Hoang VV, Giang NH, Dong TQ, Bubanja V (2022) Atomic structure and rippling in amorphous two-dimensional SiC nanoribbons. Comp Mater Sci 203:111123

    Article  Google Scholar 

  55. Hoang VV (2022) Melting and pe-melting of two-dimensional crystalline SiC nanoribbons. Physica E 137:115012

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for supporting this study.

Funding

Ho Chi Minh City University of Technology (HCMUT), VNU-HCM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang T. T. Nguyen.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare. All co-authors have seen and agree with the contents of the manuscript and there is no financial interest to report.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Hoang, V., Le Nguyen, T.M. & Nguyen, H.T.T. Formation of 2D silicon-carbide nanoribbons by cooling from the melt and out-of-plane displacements of atoms. J Nanopart Res 25, 232 (2023). https://doi.org/10.1007/s11051-023-05883-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05883-3

Keywords

Navigation