Skip to main content
Log in

Graphene layer of hybrid graphene/hexagonal boron nitride model upon heating

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Hybrid graphene/h-BN model is studied via molecular dynamics simulation to observe the evolution of graphene layer upon heating. Model containing 20,064 atoms is heated up from 50 to 8000 K via Tersoff and Lennard–Jones potentials. Various thermodynamic quantities, structural characteristics, and the occurrence of liquid-like atoms are studied. The Lindemann criterion for 2D case is calculated and used to observe the appearance of liquid-like atoms. The atomic mechanism of structural evolution upon heating is analyzed on the basis of the occurrence/growth of liquid-like atoms, the formation of clusters, the coordination number, and the ring statistics. The liquid-like atoms tend to form clusters and the largest cluster increases slightly in order to form a single largest cluster of liquid-like atoms. The other models such as free-standing graphene, zigzag GNR, and armchair GNR are also presented to have an entire picture about the evolution of graphene upon heating in different models. Note that the largest clusters of free-standing graphene as well as zigzag GNR, and armchair GNR tend to decrease to form a ring-like 2D liquid carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Novoselov K, Geim AK, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200. https://doi.org/10.1038/nature04233

    Article  Google Scholar 

  2. Zhang Y, Jiang Z, Small J, Purewal M, Tan Y-W, Fazlollahi M, Chudow J, Jaszczak J, Stormer H, Kim P (2006) Landau-level splitting in graphene in high magnetic fields. Phys Rev Lett 96:136806. https://doi.org/10.1103/PhysRevLett.96.136806

    Article  Google Scholar 

  3. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183. https://doi.org/10.1038/nmat1849

    Article  Google Scholar 

  4. Meric I, Han MY, Young AF, Ozyilmaz B, Kim P, Shepard KL (2008) Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat Nanotechnol 3:654. https://doi.org/10.1038/nnano.2008.268

    Article  Google Scholar 

  5. Wang WL, Meng S, Kaxiras E (2008) Graphene nanoflakes with large spin. Nano Lett 8:241. https://doi.org/10.1021/nl072548a

    Article  Google Scholar 

  6. Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954. https://doi.org/10.1103/PhysRevB.54.17954

    Article  Google Scholar 

  7. Novoselov KS, Geim AK, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197. https://doi.org/10.1038/nature04233

    Article  Google Scholar 

  8. Son Y-W, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803. https://doi.org/10.1103/PhysRevLett.97.216803

    Article  Google Scholar 

  9. Han MY, Özyilmaz B, Zhang Y, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805. https://doi.org/10.1103/PhysRevLett.98.206805

    Article  Google Scholar 

  10. Jin-Xiang D, Xiao-Kang Z, Qian Y, Xu-Yang W, Guang-Hua C, De-Yan H (2009) Optical properties of hexagonal boron nitride thin films deposited by radio frequency bias magnetron sputtering. Chin Phys B 18:4013. https://doi.org/10.1088/1674-1056/18/9/066

    Article  Google Scholar 

  11. Li C, Bando Y, Zhi C, Huang Y, Golberg D (2009) Thickness-dependent bending modulus of hexagonal boron nitride nanosheets. Nanotechnology 20:385707. https://doi.org/10.1088/0957-4484/20/38/385707

    Article  Google Scholar 

  12. Suenaga K, Colliex C, Demoncy N, Loiseau A, Pascard H, Willaime F (1997) Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon. Science 278:653–655. https://doi.org/10.1126/science.278.5338.653

    Article  Google Scholar 

  13. Han W-Q, Mickelson W, Cumings J, Zettl A (2002) Transformation of BxCyNz nanotubes to pure BN nanotubes. Appl Phys Lett 81:1110–1112. https://doi.org/10.1002/adma.200700179

    Article  Google Scholar 

  14. Kawasaki T, Ichimura T, Kishimoto H, Akbar AA, Ogawa T, Oshima C (2002) Double atomic layers of graphene/monolayer h-BN on Ni (111) studied by scanning tunneling microscopy and scanning tunneling spectroscopy. Surf Rev Lett 9:1459–1464. https://doi.org/10.1142/S0218625X02003883

    Article  Google Scholar 

  15. Novoselov K, Mishchenko A, Carvalho A, Neto AC (2016) 2D materials and van der Waals heterostructures. Science 353:aac9439. https://doi.org/10.1126/science.aac9439

    Article  Google Scholar 

  16. Giovannetti G, Khomyakov PA, Brocks G, Kelly PJ, Van Den Brink J (2007) Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys Rev B 76:073103. https://doi.org/10.1126/science.aac9439

    Article  Google Scholar 

  17. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5:722. https://doi.org/10.1038/nnano.2010.172

    Article  Google Scholar 

  18. Decker R, Wang Y, Brar VW, Regan W, Tsai H-Z, Wu Q, Gannett W, Zettl A, Crommie MF (2011) Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett 11:2291–2295. https://doi.org/10.1021/nl2005115

    Article  Google Scholar 

  19. Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi JD, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, LeRoy BJ (2012) Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat Phys 8:382. https://doi.org/10.1038/nphys2272

    Article  Google Scholar 

  20. Bokdam M, Khomyakov PA, Brocks G, Zhong Z, Kelly PJ (2011) Electrostatic doping of graphene through ultrathin hexagonal boron nitride films. Nano Lett 11:4631–4635. https://doi.org/10.1021/nl202131q

    Article  Google Scholar 

  21. Martins T, Miwa RD, Da Silva AJ, Fazzio A (2007) Electronic and transport properties of boron-doped graphene nanoribbons. Phys Rev Lett 98:196803. https://doi.org/10.1007/s13204-013-0220-2

    Article  Google Scholar 

  22. Lherbier A, Blase X, Niquet Y-M, Triozon F, Roche S (2008) Charge transport in chemically doped 2D graphene. Phys Rev Lett 101:036808. https://doi.org/10.1103/PhysRevLett.101.036808

    Article  Google Scholar 

  23. Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-doping of graphene through electrothermal reactions with ammonia. Science 324:768–771. https://doi.org/10.1126/science.1170335

    Article  Google Scholar 

  24. Kaner R, Kouvetakis J, Warble C, Sattler M, Bartlett N (1987) Boron-carbon-nitrogen materials of graphite-like structure. Mater Res Bull 22:399–404. https://doi.org/10.1016/0025-5408(87)90058-4

    Article  Google Scholar 

  25. Liu AY, Wentzcovitch RM, Cohen ML (1989) Atomic arrangement and electronic structure of BC2N. Phys Rev B 39:1760. https://doi.org/10.1103/PhysRevB.39.1760

    Article  Google Scholar 

  26. Miyamoto Y, Rubio A, Cohen ML, Louie SG (1994) Chiral tubules of hexagonal BC2N. Phys Rev B 50:4976. https://doi.org/10.1103/PhysRevB.50.4976

    Article  Google Scholar 

  27. Weng-Sieh Z, Cherrey K, Chopra NG, Blase X, Miyamoto Y, Rubio A, Cohen ML, Louie SG, Zettl A, Gronsky R (1995) Synthesis of BxCyNz nanotubules. Phys Rev B 51:11229. https://doi.org/10.1016/S0009-2614(01)00993-9

    Article  Google Scholar 

  28. Hernandez E, Goze C, Bernier P, Rubio A (1998) Elastic properties of C and BxCyNz composite nanotubes. Phys Rev Lett 80:4502. https://doi.org/10.1103/PhysRevLett.80.4502

    Article  Google Scholar 

  29. Golberg D, Bando Y, Bourgeois L, Kurashima K, Sato T (2000) Large-scale synthesis and HRTEM analysis of single-walled B-and N-doped carbon nanotube bundles. Carbon 38:2017–2027. https://doi.org/10.1016/S0008-6223(00)00058-0

    Article  Google Scholar 

  30. Golberg D, Bando Y, Dorozhkin P, Dong Z-C (2004) Synthesis, analysis, and electrical property measurements of compound nanotubes in the BCN ceramic system. MRS Bull 29:38–42. https://doi.org/10.1557/mrs2004.15

    Article  Google Scholar 

  31. Jung J, Qiao Z, Niu Q, MacDonald AH (2012) Transport properties of graphene nanoroads in boron nitride sheets. Nano Lett 12:2936–2940. https://doi.org/10.1021/nl300610w

    Article  Google Scholar 

  32. Son M, Lim H, Hong M, Choi HC (2011) Direct growth of graphene pad on exfoliated hexagonal boron nitride surface. Nanoscale 3:3089–3093. https://doi.org/10.1039/C1NR10504C

    Article  Google Scholar 

  33. Tang S, Ding G, Xie X, Chen J, Wang C, Ding X, Huang F, Lu W, Jiang M (2012) Nucleation and growth of single crystal graphene on hexagonal boron nitride. Carbon 50:329–331. https://doi.org/10.1016/j.carbon.2011.07.062

    Article  Google Scholar 

  34. Tang S, Wang H, Zhang Y, Li A, Xie H, Liu X, Liu L, Li T, Huang F, Xie X (2013) Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition. Sci Rep 3:2666. https://doi.org/10.1038/srep02666

    Article  Google Scholar 

  35. Yang W, Chen G, Shi Z, Liu C-C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D (2013) Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat Mater 12:792. https://doi.org/10.1021/nn5058968

    Article  Google Scholar 

  36. Tang S, Wang H, Wang HS, Sun Q, Zhang X, Cong C, Xie H, Liu X, Zhou X, Huang F (2015) Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nat Commun 6:6499. https://doi.org/10.1038/ncomms7499

    Article  Google Scholar 

  37. Kim KK, Hsu A, Jia X, Kim SM, Shi Y, Hofmann M, Nezich D, Rodriguez-Nieva JF, Dresselhaus M, Palacios T (2011) Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett 12:161–166. https://doi.org/10.1021/nl203249a

    Article  Google Scholar 

  38. Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L-P, Zhang Z, Fu Q, Peng L-M (2012) Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun 3:699

    Article  Google Scholar 

  39. Kim G, Jang A-R, Jeong HY, Lee Z, Kang DJ, Shin HS (2013) Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. Nano Lett 13:1834–1839. https://doi.org/10.1021/nl400559s

    Article  Google Scholar 

  40. Arjmandi-Tash H, Kalita D, Han Z, Othmen R, Nayak G, Berne C, Landers J, Watanabe K, Taniguchi T, Marty L (2018) Large scale graphene/h-BN heterostructures obtained by direct CVD growth of graphene using high-yield proximity-catalytic process. J Phys Mater 1:015003

    Article  Google Scholar 

  41. Kawaguchi M, Kawashima T, Nakajima T (1996) Syntheses and structures of new graphite-like materials of composition BCN (H) and BC3N (H). Chem Mater 8:1197–1201. https://doi.org/10.1021/cm950471y

    Article  Google Scholar 

  42. Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z, Storr K, Balicas L (2010) Atomic layers of hybridized boron nitride and graphene domains. Nat Mater 9:430. https://doi.org/10.1038/nmat2711

    Article  Google Scholar 

  43. Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31:5262. https://doi.org/10.1103/PhysRevB.33.1451

    Article  Google Scholar 

  44. Bazant MZ, Kaxiras E, Justo JF (1997) Environment-dependent interatomic potential for bulk silicon. Phys Rev B 56:8542. https://doi.org/10.1088/0953-8984/22/3/035802

    Article  Google Scholar 

  45. Justo JF, Bazant MZ, Kaxiras E, Bulatov VV, Yip S (1998) Interatomic potential for silicon defects and disordered phases. Phys Rev B 58:2539. https://doi.org/10.1103/PhysRevB.58.2539

    Article  Google Scholar 

  46. Marks N (2000) Generalizing the environment-dependent interaction potential for carbon. Phys Rev B 63:035401. https://doi.org/10.1103/PhysRevB.63.035401

    Article  Google Scholar 

  47. Finnis M, Sinclair J (1984) A simple empirical N-body potential for transition metals. Philos Mag A 50:45. https://doi.org/10.1080/01418618408244210

    Article  Google Scholar 

  48. Baskes M (1987) Application of the embedded-atom method to covalent materials: a semiempirical potential for silicon. Phys Rev Lett 59:2666. https://doi.org/10.1103/PhysRevLett.59.2666

    Article  Google Scholar 

  49. Pettifor D (1989) New many-body potential for the bond order. Phys Rev Lett 63:2480. https://doi.org/10.1103/PhysRevLett.63.2480

    Article  Google Scholar 

  50. Pettifor D, Oleinik I (1999) Analytic bond-order potentials beyond Tersoff-Brenner. I. Theory. Phys Rev B 59:8487. https://doi.org/10.1103/PhysRevB.59.8500

    Article  Google Scholar 

  51. Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter 14:783. https://doi.org/10.1088/0953-8984/14/4/312

    Article  Google Scholar 

  52. Van Duin AC, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105:9396–9409. https://doi.org/10.1021/jp004368u

    Article  Google Scholar 

  53. Van Duin AC, Strachan A, Stewman S, Zhang Q, Xu X, Goddard WA (2003) ReaxFFSiO reactive force field for silicon and silicon oxide systems. J Phys Chem A 107:3803–3811. https://doi.org/10.1021/jp0276303

    Article  Google Scholar 

  54. Chenoweth K, Van Duin AC, Goddard WA (2008) ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem A 112:1040–1053. https://doi.org/10.1021/jp709896w

    Article  Google Scholar 

  55. Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37:6991. https://doi.org/10.1103/PhysRevB.37.6991

    Article  Google Scholar 

  56. Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39:5566. https://doi.org/10.1103/PhysRevB.41.3248.2

    Article  Google Scholar 

  57. Nord J, Albe K, Erhart P, Nordlund K (2003) Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride. J Phys Condens Matter 15:569. https://doi.org/10.1088/0953-8984/15/32/324

    Article  Google Scholar 

  58. Brenner DW (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42:9458

    Article  Google Scholar 

  59. Yu N, Polycarpou AA (2004) Adhesive contact based on the Lennard–Jones potential: a correction to the value of the equilibrium distance as used in the potential. J Colloid Interface Sci 278:428–435. https://doi.org/10.1016/j.jcis.2004.06.029

    Article  Google Scholar 

  60. Kang JW, Hwang HJ (2004) Comparison of C60 encapsulations into carbon and boron nitride nanotubes. J Phys Condens Matter 16:3901. https://doi.org/10.1088/0953-8984/16/23/010

    Article  Google Scholar 

  61. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1. https://doi.org/10.1006/jcph.1995.1039

    Article  Google Scholar 

  62. Hoang VV, Cam Tuyen LT, Dong TQ (2016) Stages of melting of graphene model in two-dimensional space. Philos Mag 96:1993–2008. https://doi.org/10.1080/14786435.2016.1185183

    Article  Google Scholar 

  63. Gleiman S, Chen C-K, Datye A, Phillips J (2002) Melting and spheroidization of hexagonal boron nitride in a microwave-powered, atmospheric pressure nitrogen plasma. J Mater Sci 37:3429. https://doi.org/10.1023/A:1016502804363

    Article  Google Scholar 

  64. Le Roux S, Petkov V (2010) ISAACS–interactive structure analysis of amorphous and crystalline systems. J Appl Crystallogr 43:181. https://doi.org/10.1107/S0021889809051929

    Article  Google Scholar 

  65. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33

    Article  Google Scholar 

  66. Bak P (1982) Commensurate phases, incommensurate phases and the devil’s staircase. Rep Prog Phys 45:587. https://doi.org/10.1088/0034-4885/45/6/001

    Article  Google Scholar 

  67. Savvatimskiy A (2005) Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003). Carbon 43:1115–1142. https://doi.org/10.1016/j.carbon.2004.12.027

    Article  Google Scholar 

  68. March NH, Tosi MP (2002) Introduction to liquid state physics. World Scientific, Singapore. https://doi.org/10.1063/1.3024519

    Book  Google Scholar 

  69. Mermin ND, Wagner H (1966) Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys Rev Lett 17:1133. https://doi.org/10.1103/PhysRevLett.17.1133

    Article  Google Scholar 

  70. Mermin ND (1968) Crystalline order in two dimensions. Phys Rev 176:250. https://doi.org/10.1103/PhysRevB.20.4762

    Article  Google Scholar 

  71. Landau LD, Lifshitz EM (2013) Course of theoretical physics, vol 5. Elsevier, Amsterdam

    Google Scholar 

  72. Bedanov V, Gadiyak G, Lozovik YE (1985) On a modified Lindemann-like criterion for 2D melting. Phys Lett A 109:289. https://doi.org/10.1209/epl/i1998-00205-7

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank for financial support from the National Foundation for Science and Technology Development (NAFOSTED) under Grant 103.01.2015.101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang T. T. Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.T.T. Graphene layer of hybrid graphene/hexagonal boron nitride model upon heating. Carbon Lett. 29, 521–528 (2019). https://doi.org/10.1007/s42823-019-00056-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-019-00056-6

Keywords

Navigation